文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.DiceLoss

class mindspore.nn.DiceLoss(smooth=1e-5)[源代码]

Dice系数是一个集合相似性loss,用于计算两个样本之间的相似性。当分割结果最好时,Dice系数的值为1,当分割结果最差时,Dice系数的值为0。

Dice系数表示两个对象之间的面积与总面积的比率。 函数如下:

dice=12|predtrue||pred|+|true|+smooth

pred 表示 logitstrue 表示 labels

参数:
  • smooth (float) - 将添加到分母中,以提高数值稳定性的参数。取值大于0。默认值: 1e-5

输入:
  • logits (Tensor) - 输入预测值。数据类型必须为float16或float32。

  • labels (Tensor) - 输入目标值,一般与 logits 的shape相同。数据类型必须为float16或float32。

输出:

Tensor,shape为每样本采样的Dice系数的Tensor。

异常:
  • ValueError - logits 的维度与 labels 不同。

  • TypeError - logitslabels 的类型不是Tensor。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> loss = nn.DiceLoss(smooth=1e-5)
>>> logits = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mindspore.float32)
>>> labels = Tensor(np.array([[0, 1], [1, 0], [0, 1]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.38596618