文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.mint.nn.functional.mish

mindspore.mint.nn.functional.mish(input)[源代码]

逐元素计算输入Tensor的MISH(A Self Regularized Non-Monotonic Neural Activation Function 自正则化非单调神经激活函数)。

公式如下:

mish(input)=inputtanh(softplus(input))

更多详细信息请参见 A Self Regularized Non-Monotonic Neural Activation Function

Mish激活函数图:

../../_images/Mish.png
参数:
  • input (Tensor) - Mish的输入。支持数据类型:

    • Ascend:float16、float32。

返回:

Tensor,与 input 的shape和数据类型相同。

异常:
  • TypeError - input 不是Tensor。

  • TypeError - input 的数据类型不是float16或float32。

支持平台:

Ascend

样例:

>>> import mindspore
>>> from mindspore import Tensor, mint
>>> import numpy as np
>>> x = Tensor(np.array([[-1.1, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> output = mint.nn.functional.mish(x)
>>> print(output)
[[-3.0764845e-01 3.9974124e+00 -2.6832507e-03]
 [ 1.9439589e+00 -3.3576239e-02 8.9999990e+00]]