mindspore.ops.function.reshard_func 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Defines parameter operators with functional form."""
from mindspore.ops import operations as P
from mindspore.ops._primitive_cache import _get_cache_prim
from mindspore.parallel.shard import Layout
from mindspore.common.tensor import Tensor


[文档]def reshard(tensor, layout): r""" Specify the tensor by the given layout. The given layout must be type mindspore.Layout, can check :class:`mindspore.Layout` for reference. - In the Graph mode, this function can set the sharding propagation strategy of a tensor. For those tensor do not manually be set, their strategies are decided by the sharding strategy propagation algorithm automatically. - In the PyNative mode, this function can set a tensor sharding strategy in a Cell that runs in the Graph mode (i.e. inside the Cell processed by Cell.shard/F.shard). Note: - In the auto parallel mode, an exception will throw if the search mode is not "sharding_propagation". - In the semi-auto parallel mode, the parallel mode will automatically switch to auto parallel mode with the search mode be set to "sharding_propagation". - Currently, configuring multi-dimension and multi-copy reshard strategy in mindspore.Layout is not supported. Args: tensor (Tensor): The tensor to be set the sharding strategy. layout (Layout): The layout to shard the tensor precisely, including the device arrangement (device_matrix) and the alias for the device matrix (alias_name). Returns: Tensor. The mathematically equivalent of the input tensor. Raises: TypeError: Reshard takes in Tensor type as the first input param, but got: `type(tensor)`. TypeError: Reshard only support type mindspore.Layout but got: `type(layout)`. Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import ops, nn, Tensor, context, Layout >>> context.set_context(mode=ms.GRAPH_MODE) >>> context.set_auto_parallel_context(parallel_mode=ms.ParallelMode.AUTO_PARALLEL, ... search_mode="sharding_propagation") >>> class Network(nn.Cell): ... def __init__(self): ... super().__init__() ... self.matmul = ops.MatMul() ... self.relu = ops.ReLU() ... def construct(self, x, layout): ... x = self.relu(x) ... x_reshard = ops.reshard(x, layout) ... y = Tensor(np.ones(shape=(128, 128)), dtype=ms.float32) ... x = self.matmul(x_reshard, y) ... return x >>> >>> layout = Layout((4, 2), ("dp", "mp")) >>> input_layout = layout("dp", "mp") >>> net = Network() >>> tensor = Tensor(np.ones(shape=(128, 128)), dtype=ms.float32) >>> out = net(tensor, input_layout) """ if not isinstance(tensor, Tensor): raise TypeError(f"Reshard takes in Tensor type as the first input param, but got: {type(tensor)}.") if not isinstance(layout, Layout): raise TypeError(f"Reshard only support type mindspore.Layout, but got: {type(layout)}.") def layout_to_tuple(layout): layout_dict = layout.to_dict() tensor_map = layout_dict["tensor_map"] device_matrix_rev = layout_dict["device_matrix"][::-1] axis_stgy = () for ind in tensor_map: if ind == -1: axis_stgy += (1,) else: axis_stgy += (device_matrix_rev[ind],) return axis_stgy in_strategy = layout_to_tuple(layout) _reshard = _get_cache_prim(P.Reshard)(in_layout=(layout,), out_layout=(layout,), in_strategy=(in_strategy,)) return _reshard(tensor)
__all__ = [ 'reshard' ] __all__.sort()