mindspore.hal.contiguous_tensors_handle 源代码

# This is the Python alloc contiguous memory handle.
#
# Copyright 2024-2025 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Contiguous memory handle."""
from mindspore.common.tensor import Tensor
from mindspore.common.api import _convert_python_data
from mindspore.common.dtype import type_size_in_bytes
from mindspore._c_expression import slice_by_tensor_index, slice_by_padding_shape, \
    combine_tensor_list_contiguous as combine_tensor_list, Tensor as Tensor_


[文档]def combine_tensor_list_contiguous(tensor_list, enable_mem_align=True): r""" Return a contiguous memory handle where contiguous memory has been requested and slicing functionality is provided. Args: tensor_list (list[Tensor], Tuple[Tensor]): The tensor list to be stored. enable_mem_align (bool, optional): Whether to enable the memory alignment function. False is not supported. Default: ``True`` . Returns: ContiguousTensorsHandle, a manager with contiguous memory. Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindspore.hal.contiguous_tensors_handle import combine_tensor_list_contiguous >>> x = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32)) >>> handle = combine_tensor_list_contiguous([x, y], True) >>> print(handle[0].shape) [1] >>> print(handle[1: 3].asnumpy()) [2, 3] >>> print(output.slice_by_tensor_index(0, 1).asnumpy()) [1, 2, 3] """ return ContiguousTensorsHandle(tensor_list, enable_mem_align)
[文档]class ContiguousTensorsHandle: r""" ContiguousTensorsHandle is a handle manage continuous memory. Args: tensor_list (list[Tensor], Tuple[Tensor]): The tensor list to be stored. enable_mem_align (bool, optional): Whether to enable the memory alignment function. False is not supported. Default: ``True`` . Returns: ContiguousTensorsHandle, a manager with contiguous memory. Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindspore.hal.contiguous_tensors_handle import ContiguousTensorsHandle >>> x = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32)) >>> handle = ContiguousTensorsHandle([x, y], True) >>> print(handle[0].shape) [1] >>> print(handle[1: 3].asnumpy()) [2, 3] """ def __init__(self, tensor_list, enable_mem_align=True): if isinstance(tensor_list, (list, tuple)): for tensor in tensor_list: if not isinstance(tensor, (Tensor, Tensor_)): raise TypeError(f"input list must be [Tensor, ...].") if isinstance(tensor_list, list): self.tensor_list = tuple(tensor_list) else: self.tensor_list = tensor_list else: raise TypeError(f"input list must be [Tensor, ...].") if not isinstance(enable_mem_align, bool): raise TypeError(f"enable_mem_align must be bool.") padding_sizes_pair = combine_tensor_list(self.tensor_list, enable_mem_align) self.before_padding_sizes = padding_sizes_pair[0] self.after_padding_sizes = padding_sizes_pair[1] self.total_padding_size = sum(self.after_padding_sizes) self.handle_shape = self.total_padding_size / type_size_in_bytes(self.tensor_list[0].dtype) self.enable_mem_align = enable_mem_align def __getitem__(self, item): """ item is sliced by shape :param item: :return: Tensor """ start = 0 end = int(self.handle_shape) if isinstance(item, slice): if item.start is not None: start = item.start if item.stop is not None: end = item.stop if not isinstance(start, int) or not isinstance(end, int): raise TypeError(f"slice input error.") if start < 0 or end > self.handle_shape or start >= end: raise ValueError(f"slice input error.") return _convert_python_data(slice_by_padding_shape(self.tensor_list[0], start, end)) if not isinstance(item, int): raise TypeError(f"slice input must be " f"1.index -> int." f"2.[start: end: step] -> [int: int: int].") if item < 0 or item > self.handle_shape: raise ValueError(f"slice input is out of tensor_list size.") return _convert_python_data(slice_by_padding_shape(self.tensor_list[0], item, item + 1)) def __str__(self): list_str = "Handle total size: " + str(self.total_padding_size) + "\n" index = 0 for tensor in self.tensor_list: list_str = list_str + "Tensor[" + str(index) + "]: " + str(tensor.asnumpy()) + "\n" index += 1 return list_str
[文档] def slice_by_tensor_index(self, start=None, end=None): """ Return the tensor which is sliced by tensor index. Args: start(int, None): Starting position. Default:``None``. end(int, None): Deadline position. Default:``None``. Returns: Tensor,is sliced by tensor index. Raises: TypeError: If `start` or `end`, is neither an 'int' nor a 'none'. ValueError: If values of `start` or `end` are negative, or out of the list range, or start >= end. Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindspore.hal.contiguous_tensors_handle import ContiguousTensorsHandle >>> x = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32)) >>> handle = ContiguousTensorsHandle([x, y], True) >>> print(output.slice_by_tensor_index(0, 1).asnumpy()) [1, 2, 3] """ index_start = 0 index_end = len(self.tensor_list) if start is not None: index_start = start if end is None: index_end = index_start + 1 if end is not None: index_end = end if not isinstance(index_start, int) or not isinstance(index_end, int): raise TypeError(f"slice input error.") if index_start < 0 or index_end > len(self.tensor_list) or index_start >= index_end: raise ValueError(f"slice input error.") return _convert_python_data(slice_by_tensor_index(self.tensor_list, self.before_padding_sizes, self.after_padding_sizes, index_start, index_end))