mindspore.ops.adaptive_avg_pool1d
=================================

.. image:: https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.1/resource/_static/logo_source.svg
    :target: https://gitee.com/mindspore/mindspore/blob/r2.3.1/docs/api/api_python/ops/mindspore.ops.func_adaptive_avg_pool1d.rst
    :alt: 查看源文件


.. py:function:: mindspore.ops.adaptive_avg_pool1d(input, output_size)

    对可以看作是由一系列1D平面组成的输入Tensor,应用一维自适应平均池化操作。

    通常,输入的shape为 :math:`(N, C, L_{in})`,adaptive_avg_pool1d输出区域平均值在 :math:`L_{in}` 区间。
    输出的shape为 :math:`(N, C, L_{out})`,其中 :math:`L_{out}` 由 `output_size` 定义。

    .. note::
        :math:`L_{in}` 必须能被 `output_size` 整除。

    参数:
        - **input** (Tensor) - 输入shape为 :math:`(N, C, L_{in})`,数据类型为float16、float32。
        - **output_size** (int) - 大小为 :math:`L_{out}` 。

    返回:
        Tensor,数据类型与 `input` 相同。
        输出的shape为 :math:`(N, C, L_{out})` 。

    异常:
        - **TypeError** - 如果 `output_size` 不是int类型。
        - **TypeError** - 如果 `input` 的数据类型不是float16或者float32。
        - **ValueError** - 如果 `output_size` 小于1。
        - **ValueError** - 如果 `input` 的维度不等于3。
        - **ValueError** - 如果 `input` 的最后一维尺寸小于 `output_size` 。
        - **ValueError** - 如果 `input` 的最后一维尺寸不能被 `output_size` 整除。