比较与torch.Tensor.min的差异

查看源文件

torch.Tensor.min

torch.Tensor.min(dim=None, keepdim=False)

更多内容详见torch.Tensor.min

mindspore.Tensor.min

mindspore.Tensor.min(axis=None, keepdims=False, *, initial=None, where=True, return_indices=False)

更多内容详见mindspore.Tensor.min

差异对比

MindSpore在PyTorch的基础上,兼容了Numpy的入参 initialwhere,新增了参数return_indices用于控制是否返回索引。

分类

子类

PyTorch

MindSpore

差异

输入

输入1

dim

axis

功能一致,参数名不同

输入2

keepdim

keepdims

功能一致,参数名不同

输入3

-

initial

不涉及

输入4

-

where

不涉及

输入5

-

return_indices

不涉及

代码示例1

不指定维度时,两API实现功能一致。

import mindspore as ms
import torch
import numpy as np

np_x = np.array([[-0.0081, -0.3283, -0.7814, -0.0934],
                 [1.4201, -0.3566, -0.3848, -0.1608],
                 [-0.0446, -0.1843, -1.1348, 0.5722],
                 [-0.6668, -0.2368, 0.2790, 0.0453]]).astype(np.float32)
# mindspore
input_x = ms.Tensor(np_x)
output = input_x.min()
print(output)
# -1.1348

# torch
input_x = torch.tensor(np_x)
output = input_x.min()
print(output)
# tensor(-1.1348)

代码示例2

指定维度时,MindSpore默认不返回索引,需手动指定。

import mindspore as ms
import torch
import numpy as np

np_x = np.array([[-0.0081, -0.3283, -0.7814, -0.0934],
                 [1.4201, -0.3566, -0.3848, -0.1608],
                 [-0.0446, -0.1843, -1.1348, 0.5722],
                 [-0.6668, -0.2368, 0.2790, 0.0453]]).astype(np.float32)
# mindspore
input_x = ms.Tensor(np_x)
values, indices = input_x.min(axis=1, return_indices=True)
print(values)
# [-0.7814 -0.3848 -1.1348 -0.6668]
print(indices)
# [2 2 2 0]

# torch
input_x = torch.tensor(np_x)
values, indices = input_x.min(dim=1)
print(values)
# tensor([-0.7814, -0.3848, -1.1348, -0.6668])
print(indices)
# tensor([2, 2, 2, 0])