比较与torch.nn.functional.dropout3d的差异
torch.nn.functional.dropout3d
torch.nn.functional.dropout3d(input, p=0.5, training=True, inplace=False) -> Tensor
mindspore.ops.dropout3d
mindspore.ops.dropout3d(input, p=0.5, training=True) -> Tensor
更多内容详见mindspore.ops.dropout3d。
差异对比
MindSpore此API功能与PyTorchy一致,参数支持的数据类型有差异。
PyTorch:在训练期间,dropout3d以服从伯努利分布的概率p随机将输入Tensor的某些通道归零,每个通道将会独立依据伯努利分布概率p来确定是否被清零。对输入Tensor的某些通道清零,已被证明能有效地减少过度拟合,防止神经元共适应。
MindSpore:MindSpore只支持秩为5的Tensor作为输入。
分类 |
子类 |
PyTorch |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
input |
input |
MindSpore只支持秩为5的Tensor作为输入 |
参数2 |
p |
p |
- |
|
参数3 |
training |
training |
- |
|
参数4 |
inplace |
- |
- |
代码示例1
# PyTorch
import torch
input = torch.ones(2, 3, 2, 4)
output = torch.nn.functional.dropout3d(input)
print(output.shape)
# torch.Size([2, 3, 2, 4])
# MindSpore
import mindspore as ms
from mindspore import ops
from mindspore import Tensor
import numpy as np
input = Tensor(np.ones([2, 3, 2, 4]), ms.float32)
input = input.expand_dims(0)
output = ops.dropout3d(input)
output = output.squeeze(0)
print(output.shape)
# (2, 3, 2, 4)
代码示例2
# PyTorch
import torch
input = torch.ones(1, 1, 2, 3, 2, 4)
output = torch.nn.functional.dropout3d(input)
print(output.shape)
# torch.Size([1, 1, 2, 3, 2, 4])
# MindSpore
import mindspore as ms
from mindspore import ops
from mindspore import Tensor
import numpy as np
input = Tensor(np.ones([1, 1, 2, 3, 2, 4]), ms.float32)
input = input.squeeze(0)
output = ops.dropout3d(input)
output = output.expand_dims(0)
print(output.shape)
# (1, 1, 2, 3, 2, 4)