比较与torch.nn.SyncBatchNorm的差异

查看源文件

torch.nn.SyncBatchNorm

class torch.nn.SyncBatchNorm(
    num_features,
    eps=1e-05,
    momentum=0.1,
    affine=True,
    track_running_stats=True,
    process_group=None
)(input) -> Tensor

更多内容详见torch.nn.SyncBatchNorm

mindspore.nn.SyncBatchNorm

class mindspore.nn.SyncBatchNorm(
    num_features,
    eps=1e-5,
    momentum=0.9,
    affine=True,
    gamma_init='ones',
    beta_init='zeros',
    moving_mean_init='zeros',
    moving_var_init='ones',
    use_batch_statistics=None,
    process_groups=None
)(x) -> Tensor

更多内容详见mindspore.nn.SyncBatchNorm

差异对比

PyTorch:对输入的数据进行跨设备同步批归一化。

MindSpore:MindSpore此API实现功能与PyTorch基本一致。MindSpore输入仅支持二维和四维。MindSpore中momentum参数默认值为0.9,与PyTorch的momentum转换关系为1-momentum,默认值行为与PyTorch相同;训练以及推理时的参数更新策略和PyTorch有所不同。

分类

子类

PyTorch

MindSpore

差异

参数

参数1

num_features

num_features

-

参数2

eps

eps

-

参数3

momentum

momentum

功能一致,但PyTorch中的默认值是0.1,MindSpore中是0.9,与PyTorch的momentum转换关系为1-momentum,默认值行为与PyTorch相同

参数4

affine

affine

-

参数5

track_running_stats

use_batch_statistics

功能一致,不同值对应的默认方式不同

参数6

-

gamma_init

PyTorch无此参数,MindSpore可以初始化参数gamma的值

参数7

-

beta_init

PyTorch无此参数,MindSpore可以初始化参数beta的值

参数8

-

moving_mean_init

PyTorch无此参数,MindSpore可以初始化参数moving_mean的值

参数9

-

moving_var_init

PyTorch无此参数,MindSpore可以初始化参数moving_var的值

参数10

process_group

process_groups

-

输入

单输入

input

x

接口输入,MindSpore只支持二维和四维输入

详细区别如下: BatchNorm是CV领域比较特殊的正则化方法,它在训练和推理的过程中有着不同计算流程,通常由算子属性控制。MindSpore和PyTorch的 BatchNorm在这一点上使用了两种不同的参数组。

  • 差异一

    torch.nn.SyncBatchNorm 在不同参数下的状态

    training

    track_running_stats

    状态

    True

    True

    期望中训练的状态,running_mean 和 running_var 会跟踪整个训练过程中 batch 的统计特性,而每组输入数据用当前 batch 的 mean 和 var 统计特性做归一化,然后再更新 running_mean 和 running_var。

    True

    False

    每组输入数据会根据当前 batch 的统计特性做归一化,但不会有 running_mean 和 running_var 参数了。

    False

    True

    期望中推理的状态,BN 使用 running_mean 和 running_var 做归一化,并且不会对其进行更新。

    False

    False

    效果同第二点,只不过处于推理状态,不会学习 weight 和 bias 两个参数。一般不采用该状态。

    mindspore.nn.SyncBatchNorm 在不同参数下的状态

    use_batch_statistics

    状态

    True

    期望中训练的状态,moving_mean 和 moving_var 会跟踪整个训练过程中 batch 的统计特性,而每组输入数据用当前 batch 的 mean 和 var 统计特性做归一化,然后再更新 moving_mean 和 moving_var。

    Fasle

    期望中推理的状态,BN 使用 moving_mean 和 moving_var 做归一化,并且不会对其进行更新。

    None

    自动设置 use_batch_statistics。如果是训练,use_batch_statistics=True,如果是推理,use_batch_statistics=False。

    通过比较可以发现,mindspore.nn.SyncBatchNorm 相比 torch.nn.SyncBatchNorm,少了两种冗余的状态,仅保留了最常用的训练和推理两种状态。

  • 差异二

    在PyTorch中,网络默认是训练模式,而MindSpore默认是推理模式(is_training为False),需要通过 net.set_train() 方法将网络调整为训练模式,此时才会在训练期间去对参数 meanvariance 进行计算,否则,在推理模式下,参数会尝试从checkpoint去加载。

  • 差异三

    BatchNorm系列算子的momentum参数在MindSpore和PyTorch表示的意义相反,关系为: $\(momentum_{pytorch} = 1 - momentum_{mindspore}\)$