比较与torch.nn.Sequential的差异
torch.nn.Sequential
torch.nn.Sequential(
*args
)
更多内容详见torch.nn.Sequential。
mindspore.nn.SequentialCell
mindspore.nn.SequentialCell(
*args
)
更多内容详见mindspore.nn.SequentialCell。
差异对比
PyTorch:构造Cell顺序容器。Sequential按照传入List的顺序依次将Cell添加。此外,也支持OrderedDict作为构造器传入。
MindSpore:构造Cell顺序容器。入参类型和PyTorch一致。和PyTorch相比,MindSpore支持append(),在容器末尾添加Cell。
分类 |
子类 |
PyTorch |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
args |
args |
传入容器的参数,支持List和OrderedDict类型。 |
代码示例
import collections
# In MindSpore
import mindspore as ms
model = ms.nn.SequentialCell(
ms.nn.Conv2d(1,20,5),
ms.nn.ReLU(),
ms.nn.Conv2d(20,64,5),
ms.nn.ReLU()
)
print(model)
# Out:
# SequentialCell<
# (0): Conv2d<input_channels=1, output_channels=20, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (1): ReLU<>
# (2): Conv2d<input_channels=20, output_channels=64, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (3): ReLU<>
# >
# Example of using Sequential with OrderedDict
model = ms.nn.SequentialCell(collections.OrderedDict([
('conv1', ms.nn.Conv2d(1,20,5)),
('relu1', ms.nn.ReLU()),
('conv2', ms.nn.Conv2d(20,64,5)),
('relu2', ms.nn.ReLU())
]))
print(model)
# Out:
# SequentialCell<
# (conv1): Conv2d<input_channels=1, output_channels=20, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (relu1): ReLU<>
# (conv2): Conv2d<input_channels=20, output_channels=64, kernel_size=(5, 5), stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=False, weight_init=normal, bias_init=zeros, format=NCHW>
# (relu2): ReLU<>
# >
# In PyTorch
import torch
model = torch.nn.Sequential(
torch.nn.Conv2d(1,20,5),
torch.nn.ReLU(),
torch.nn.Conv2d(20,64,5),
torch.nn.ReLU()
)
print(model)
# Out
# Sequential(
# (0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
# (1): ReLU()
# (2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
# (3): ReLU()
# )
# Example of using Sequential with OrderedDict
model = torch.nn.Sequential(collections.OrderedDict([
('conv1', torch.nn.Conv2d(1,20,5)),
('relu1', torch.nn.ReLU()),
('conv2', torch.nn.Conv2d(20,64,5)),
('relu2', torch.nn.ReLU())
]))
print(model)
# Out:
# Sequential(
# (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
# (relu1): ReLU()
# (conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
# (relu2): ReLU()
# )