比较与torchaudio.datasets.LIBRITTS的差异
torchaudio.datasets.LIBRITTS
class torchaudio.datasets.LIBRITTS(
root: str,
url: str = 'train-clean-100',
folder_in_archive: str = 'LibriTTS',
download: bool = False)
更多内容详见torchaudio.datasets.LIBRITTS。
mindspore.dataset.LibriTTSDataset
class mindspore.dataset.LibriTTSDataset(
dataset_dir,
usage=None,
num_samples=None,
num_parallel_workers=None,
shuffle=None,
sampler=None,
num_shards=None,
shard_id=None,
cache=None)
差异对比
PyTorch:读取LibriTTS数据集。
MindSpore:读取LibriTTS数据集,不支持下载。
分类 |
子类 |
PyTorch |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
root |
dataset_dir |
- |
参数2 |
url |
usage |
- |
|
参数3 |
folder_in_archive |
- |
MindSpore不支持 |
|
参数4 |
download |
- |
MindSpore不支持 |
|
参数5 |
- |
num_samples |
指定从数据集中读取的样本数 |
|
参数6 |
- |
num_parallel_workers |
指定读取数据的工作线程数 |
|
参数7 |
- |
shuffle |
指定是否混洗数据集 |
|
参数8 |
- |
sampler |
指定采样器 |
|
参数9 |
- |
num_shards |
指定分布式训练时将数据集进行划分的分片数 |
|
参数10 |
- |
shard_id |
指定分布式训练时使用的分片ID号 |
|
参数11 |
- |
cache |
指定单节点数据缓存服务 |
代码示例
# PyTorch
import torchaudio.datasets as datasets
from torch.utils.data import DataLoader
root = "/path/to/dataset_directory/"
dataset = datasets.LIBRITTS(root, url='train-clean-100')
dataloader = DataLoader(dataset)
# MindSpore
import mindspore.dataset as ds
# Download LibriTTS dataset files, unzip into the following structure
# .
# └── /path/to/dataset_directory/
# ├── dev-clean
# │ ├── 116
# │ │ ├── 288045
# | | | ├── 116_288045.trans.tsv
# │ │ │ ├── 116_288045_000003_000000.wav
# │ │ │ └──...
# │ │ ├── 288046
# | | | ├── 116_288046.trans.tsv
# | | | ├── 116_288046_000003_000000.wav
# │ | | └── ...
# | | └── ...
# │ ├── 1255
# │ │ ├── 138279
# | | | ├── 1255_138279.trans.tsv
# │ │ │ ├── 1255_138279_000001_000000.wav
# │ │ │ └── ...
# │ │ ├── 74899
# | | | ├── 1255_74899.trans.tsv
# | | | ├── 1255_74899_000001_000000.wav
# │ | | └── ...
# | | └── ...
# | └── ...
# └── ...
root = "/path/to/dataset_directory/"
ms_dataloader = ds.LibriTTSDataset(root, usage='train-clean-100')