比较与torchvision.datasets.Cityscapes的差异
torchvision.datasets.Cityscapes
class torchvision.datasets.Cityscapes(
root: str,
split: str,
mode: str,
target_type: str or list,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None
)
mindspore.dataset.CityscapesDataset
class mindspore.dataset.CityscapesDataset(
dataset_dir,
usage='train',
quality_mode='fine',
task='instance',
num_samples=None,
num_parallel_workers=None,
shuffle=None,
decode=None,
sampler=None,
num_shards=None,
shard_id=None,
cache=None
)
差异对比
PyTorch:读取Cityscapes数据集。
MindSpore:读取Cityscapes数据集,不支持下载。
分类 |
子类 |
PyTorch |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
root |
dataset_dir |
- |
参数2 |
split |
usage |
- |
|
参数3 |
mode |
quality_mode |
- |
|
参数4 |
target_type |
task |
- |
|
参数5 |
transform |
- |
MindSpore通过 |
|
参数6 |
target_transform |
- |
MindSpore通过 |
|
参数7 |
transforms |
- |
MindSpore通过 |
|
参数8 |
- |
num_samples |
指定从数据集中读取的样本数 |
|
参数9 |
- |
num_parallel_workers |
指定读取数据的工作线程数 |
|
参数10 |
- |
shuffle |
指定是否混洗数据集 |
|
参数11 |
- |
decode |
解码读取的图片 |
|
参数12 |
- |
sampler |
指定从数据集中选取样本的采样器 |
|
参数13 |
- |
num_shards |
指定分布式训练时将数据集进行划分的分片数 |
|
参数14 |
- |
shard_id |
指定分布式训练时使用的分片ID号 |
|
参数15 |
- |
cache |
指定单节点数据缓存服务 |
代码示例
# PyTorch
import torchvision.transforms as T
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
root = "/path/to/dataset_directory/"
dataset = datasets.Cityscapes(root, split='train', mode='fine', target_type='semantic')
dataloader = DataLoader(dataset)
# MindSpore
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
# Download the dataset files, unzip into the following structure
# .
# └── "/path/to/dataset_directory"
# ├── leftImg8bit
# | ├── train
# | | ├── aachen
# | | | ├── aachen_000000_000019_leftImg8bit.png
# | | | ├── aachen_000001_000019_leftImg8bit.png
# | | | ├── ...
# | | ├── bochum
# | | | ├── ...
# | | ├── ...
# | ├── test
# | | ├── ...
# | ├── val
# | | ├── ...
# └── gtFine
# ├── train
# | ├── aachen
# | | ├── aachen_000000_000019_gtFine_color.png
# | | ├── aachen_000000_000019_gtFine_instanceIds.png
# | | ├── aachen_000000_000019_gtFine_labelIds.png
# | | ├── aachen_000000_000019_gtFine_polygons.json
# | | ├── aachen_000001_000019_gtFine_color.png
# | | ├── aachen_000001_000019_gtFine_instanceIds.png
# | | ├── aachen_000001_000019_gtFine_labelIds.png
# | | ├── aachen_000001_000019_gtFine_polygons.json
# | | ├── ...
# | ├── bochum
# | | ├── ...
# | ├── ...
# ├── test
# | ├── ...
# └── val
# ├── ...
root = "/path/to/dataset_directory/"
ms_dataloader = ds.CityscapesDataset(root, usage='train')
ms_dataloader = ms_dataloader.map(vision.RandomCrop((28, 28)), ["image"])