比较与torchvision.datasets.CIFAR100的差异

查看源文件

torchvision.datasets.CIFAR100

class torchvision.datasets.CIFAR100(
    root: str,
    train: bool = True,
    transform: Optional[Callable] = None,
    target_transform: Optional[Callable] = None,
    download: bool = False)

更多内容详见torchvision.datasets.CIFAR100

mindspore.dataset.Cifar100Dataset

class mindspore.dataset.Cifar100Dataset(
    dataset_dir,
    usage=None,
    num_samples=None,
    num_parallel_workers=None,
    shuffle=None,
    sampler=None,
    num_shards=None,
    shard_id=None,
    cache=None)

更多内容详见mindspore.dataset.Cifar100Dataset

差异对比

PyTorch:读取CIFAR-100数据集(仅支持CIFAR-10 python version版本)。将image和label的变换操作集成在参数中。

MindSpore:读取CIFAR-100数据集(仅支持CIFAR-10 binary version版本),不支持下载,对image和label的变换需要使用mindspore.dataset.map操作。

分类

子类

PyTorch

MindSpore

差异

参数

参数1

root

dataset_dir

-

参数2

train

-

指定是否为训练集,MindSpore通过参数usage支持

参数3

transform

-

MindSpore通过 mindspore.dataset.map 操作支持

参数4

target_transform

-

MindSpore通过 mindspore.dataset.map 操作支持

参数5

download

-

MindSpore不支持

参数6

-

usage

指定数据集的子集

参数7

-

num_samples

指定从数据集中读取的样本数

参数8

-

num_parallel_workers

指定读取数据的工作线程数

参数9

-

shuffle

指定是否混洗数据集

参数10

-

sampler

指定从数据集中选取样本的采样器

参数11

-

num_shards

指定分布式训练时将数据集进行划分的分片数

参数12

-

shard_id

指定分布式训练时使用的分片ID号

参数13

-

cache

指定单节点数据缓存服务

代码示例

# PyTorch
import torchvision.transforms as T
import torchvision.datasets as datasets
from torch.utils.data import DataLoader

root = "/path/to/dataset_directory/"
dataset = datasets.CIFAR100(root, train=True, transform=T.RandomCrop((28, 28)))
dataloader = DataLoader(dataset)

# MindSpore
import mindspore.dataset as ds
import mindspore.dataset.vision as vision

# Download the dataset files, unzip into the following structure
#  .
#  └── /path/to/dataset_directory/
#      ├── train.bin
#      ├── test.bin
#      ├── fine_label_names.txt
#      └── coarse_label_names.txt
root = "/path/to/dataset_directory/"
ms_dataloader = ds.Cifar100Dataset(root, usage='train')
ms_dataloader = ms_dataloader.map(vision.RandomCrop((28, 28)), ["image"])