文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.ops.ScatterMax

class mindspore.ops.ScatterMax(use_locking=False)[源代码]

通过最大操作更新输入张量的值。

根据指定更新值和输入索引通过最大值操作更新输入数据的值。 该操作在更新完成后输出 input_x ,这样方便使用更新后的值。

对于 indices.shape 的每个 i,...,j

input_x[indices[i,...,j],:]=max(input_x[indices[i,...,j],:],updates[i,...,j,:])

输入的 input_xupdates 遵循隐式类型转换规则,以确保数据类型一致。如果数据类型不同,则低精度数据类型将转换为高精度的数据类型。当 updates 不支持转成 input_x 需要的数据类型时,则会抛出RuntimeError异常。

参数:
  • use_locking (bool) - 是否启用锁保护。默认值: False

输入:
  • input_x (Parameter) - ScatterMax的输入,任意维度的Parameter。shape: (N,) ,其中 表示任意数量的附加维度。

  • indices (Tensor) - 指定最大值操作的索引,数据类型必须为mindspore.int32或者mindspore.int64。

  • updates (Tensor) - 指定与 input_x 取最大值操作的Tensor,数据类型与 input_x 相同,shape为 indices.shape + x.shape[1:]

输出:

Tensor,更新后的 input_x ,shape和类型与 input_x 相同。

异常:
  • TypeError - use_locking 不是bool。

  • TypeError - indices 不是int32或者int64。

  • ValueError - updates 的shape不等于 indices.shape + x.shape[1:]

  • RuntimeError - 当 input_xupdates 类型不一致,需要进行类型转换时,如果 updates 不支持转成参数 input_x 需要的数据类型,就会报错。

  • RuntimeError - 在Ascend平台上,输入的 input_xindicesupdates 的数据维度大于八维。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops, Parameter
>>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32),
...                     name="input_x")
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> updates = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32)
>>> scatter_max = ops.ScatterMax()
>>> output = scatter_max(input_x, indices, updates)
>>> print(output)
[[88. 88. 88.]
 [88. 88. 88.]]