mindspore.nn.L1Loss

class mindspore.nn.L1Loss(reduction='mean')[源代码]

L1Loss用于计算预测值和目标值之间的平均绝对误差。

假设 \(x\)\(y\) 为一维Tensor,长度 \(N\) ,则计算 \(x\)\(y\) 的loss而不进行降维操作(即reduction参数设置为”none”)。

公式如下:

\[\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad \text{with } l_n = \left| x_n - y_n \right|,\]

其中, \(N\) 为batch size。如果 reduction 不是”none”,则:

\[\begin{split}\ell(x, y) = \begin{cases} \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{'sum'.} \end{cases}\end{split}\]
参数:
  • reduction (str,可选) - 指定应用于输出结果的规约计算方式,可选 'none''mean''sum' ,默认值: 'mean'

    • "none":不应用规约方法。

    • "mean":计算输出元素的平均值。

    • "sum":计算输出元素的总和。

输入:
  • logits (Tensor) - 预测值,任意维度的Tensor。

  • labels (Tensor) - 目标值,通常情况下与 logits 的shape相同。但是如果 logitslabels 的shape不同,需要保证他们之间可以互相广播。

输出:

Tensor,类型为float。

异常:
  • ValueError - reduction 不为”mean”、”sum”或”none”。

  • ValueError - logitslabels 有不同的shape,且不能互相广播。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> # Case 1: logits.shape = labels.shape = (3,)
>>> loss = nn.L1Loss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.33333334
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = nn.L1Loss(reduction='none')
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[[0. 1. 2.]
 [0. 0. 1.]]