mindspore.nn.Conv2dTranspose

class mindspore.nn.Conv2dTranspose(in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, output_padding=0, dilation=1, group=1, has_bias=False, weight_init=None, bias_init=None, dtype=mstype.float32)[源代码]

计算二维转置卷积,可以视为Conv2d对输入求梯度,也称为反卷积(实际不是真正的反卷积)。

输入的shape通常为 \((N, C_{in}, H_{in}, W_{in})\) ,其中 \(N\) 是batch size,\(C_{in}\) 是空间维度, \(H_{in}, W_{in}\) 分别为特征层的高度和宽度。 当Conv2d和ConvTranspose2d使用相同的参数初始化时,且 pad_mode 设置为”pad”,它们会在输入的高度和宽度方向上填充 \(dilation * (kernel\_size - 1) - padding\) 个零,这种情况下它们的输入和输出shape是互逆的。 然而,当 stride 大于1时,Conv2d会将多个输入的shape映射到同一个输出shape。反卷积网络可以参考 Deconvolutional Networks

参数:
  • in_channels (int) - Conv2dTranspose层输入Tensor的空间维度。

  • out_channels (int) - Conv2dTranspose层输出Tensor的空间维度。

  • kernel_size (Union[int, tuple[int]]) - 指定二维卷积核的高度和宽度。数据类型为整型或两个整型的tuple。一个整数表示卷积核的高度和宽度均为该值。两个整数的tuple分别表示卷积核的高度和宽度。

  • stride (Union[int, tuple[int]]) - 二维卷积核的移动步长。数据类型为整型或两个整型的tuple。一个整数表示在高度和宽度方向的移动步长均为该值。两个整数的tuple分别表示在高度和宽度方向的移动步长。默认值: 1

  • pad_mode (str,可选) - 指定填充模式,填充值为0。可选值为 "same""valid""pad" 。默认值: "same"

    • "same":在输入的四周填充,使得当 stride1 时,输入和输出的shape一致。待填充的量由算子内部计算,若为偶数,则均匀地填充在四周,若为奇数,多余的填充量将补充在底部/右侧。如果设置了此模式, padding 必须为0。

    • "valid":不对输入进行填充,返回输出可能的最大高度和宽度,不能构成一个完整stride的额外的像素将被丢弃。如果设置了此模式, padding 必须为0。

    • "pad":对输入填充指定的量。在这种模式下,在输入的高度和宽度方向上填充的量由 padding 参数指定。如果设置此模式, padding 必须大于或等于0。

  • padding (Union[int, tuple[int]]) - 输入的高度和宽度方向上填充的数量。数据类型为整型或包含四个整数的tuple。如果 padding 是一个整数,那么上、下、左、右的填充都等于 padding 。如果 padding 是一个有四个整数的tuple,那么上、下、左、右的填充分别等于 padding[0]padding[1]padding[2]padding[3] 。值应该要大于等于0,默认值: 0

  • output_padding (Union[int, tuple[int]]) - 输出的高度和宽度方向上填充的数量。数据类型为整型或包含两个整数的tuple。如果 output_padding 是一个整数,那么下、右的填充都等于 output_padding 。如果 output_padding 是一个有两个整数的tuple,那么下、右的填充分别等于 output_padding[0]output_padding[1] 。如果 output_padding 不为0, pad_mode 必须为 padoutput_padding 取值范围为 [0, max(stride, dilation)) ,默认值: 0

  • dilation (Union[int, tuple[int]]) - 二维卷积核膨胀尺寸。可以为单个int,或者由两个int组成的tuple。单个int表示在高度和宽度方向的膨胀尺寸均为该值。两个int组成的tuple分别表示在高度和宽度方向的膨胀尺寸。 假设 \(dilation=(d0, d1)\),则卷积核在高度方向间隔 \(d0-1\) 个元素进行采样,在宽度方向间隔 \(d1-1\) 个元素进行采样。高度和宽度上取值范围分别为[1, H]和[1, W]。默认值: 1

  • group (int) - 将过滤器拆分为组, in_channelsout_channels 必须可被 group 整除。如果组数等于 in_channelsout_channels ,这个二维卷积层也被称为二维深度卷积层。默认值: 1 .

  • has_bias (bool) - Conv2dTranspose层是否添加偏置参数。默认值: False

  • weight_init (Union[Tensor, str, Initializer, numbers.Number]) - 权重参数的初始化方法。它可以是Tensor,str,Initializer或numbers.Number。当使用str时,可选 "TruncatedNormal""Normal""Uniform""HeUniform""XavierUniform" 分布以及常量 "One""Zero" 分布的值,可接受别名 "xavier_uniform""he_uniform""ones""zeros" 。上述字符串大小写均可。更多细节请参考Initializer的值。默认值: None ,权重使用HeUniform初始化。

  • bias_init (Union[Tensor, str, Initializer, numbers.Number]) - 偏置参数的初始化方法。可以使用的初始化方法与”weight_init”相同。更多细节请参考Initializer的值。默认值: None ,偏差使用Uniform初始化。

  • dtype (mindspore.dtype) - Parameters的dtype。默认值: mstype.float32

输入:
  • x (Tensor) - Shape 为 \((N, C_{in}, H_{in}, W_{in})\) 的Tensor。

输出:

Tensor,shape为 \((N, C_{out}, H_{out}, W_{out})\)

pad_mode为 "same" 时:

\[\begin{split}\begin{array}{ll} \\ H_{out} = \text H_{in}\times \text {stride[0]} \\ W_{out} = \text W_{in}\times \text {stride[1]} \\ \end{array}\end{split}\]

pad_mode为 "valid" 时:

\[\begin{split}\begin{array}{ll} \\ H_{out} = \text H_{in}\times \text {stride[0]} + \max\{(\text{dilation[0]} - 1) \times (\text{kernel_size[0]} - 1) - \text {stride[0]}, 0 \} \\ W_{out} = \text W_{in}\times \text {stride[1]} + \max\{(\text{dilation[1]} - 1) \times (\text{kernel_size[1]} - 1) - \text {stride[1]}, 0 \} \\ \end{array}\end{split}\]

pad_mode为 "pad" 时:

\[\begin{split}\begin{array}{ll} \\ H_{out} = \text H_{in}\times \text {stride[0]} - (padding[0] + padding[1]) + \text{kernel_size[0]} + (\text{dilation[0]} - 1) \times (\text{kernel_size[0]} - 1) - \text {stride[0]} + \text {output_padding[0]} \\ W_{out} = \text W_{in}\times \text {stride[1]} - (padding[2] + padding[3]) + \text{kernel_size[1]} + (\text{dilation[1]} - 1) \times (\text{kernel_size[1]} - 1) - \text {stride[1]} + \text {output_padding[1]} \\ \end{array}\end{split}\]
异常:
  • TypeError - 如果 in_channelsout_channels 或者 group 不是整数。

  • TypeError - 如果 kernel_sizestridepadding 或者 dilation 既不是整数也不是tuple。

  • ValueError - 如果 in_channelsout_channelskernel_sizestride 或者 dilation 小于1。

  • ValueError - 如果 padding 小于0。

  • ValueError - 如果 pad_mode 不是 "same""valid""pad"

  • ValueError - 如果 padding 是一个长度不等于4的tuple。

  • ValueError - 如果 pad_mode 不等于”pad”且 padding 不等于(0,0,0,0)。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
>>> x = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
>>> output = net(x).shape
>>> print(output)
(1, 64, 19, 53)