文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.AdaptiveAvgPool2d

class mindspore.nn.AdaptiveAvgPool2d(output_size)[源代码]

对输入Tensor,提供二维的自适应平均池化操作。也就是说,对于输入任何尺寸,指定输出的尺寸都为H * W。但是输入和输出特征的数目不会变化。

输入和输出数据格式可以是”NCHW”和”CHW”。N是批处理大小,C是通道数,H是特征高度,W是特征宽度。运算如下:

hstart=floor(iHin/Hout)hend=ceil((i+1)Hin/Hout)wstart=floor(jWin/Wout)wend=ceil((j+1)Win/Wout)Output(i,j)=Input[hstart:hend,wstart:wend](hendhstart)(wendwstart)
参数:
  • output_size (Union[int, tuple]) - 输出特征图的尺寸为H * W。可以是int类型的H和W组成的tuple,也可以为一个int值,代表相同H和W,或None,如果是None,则意味着输出大小与输入相同。

输入:
  • input (Tensor) - AdaptiveAvgPool2d的输入,为三维或四维的Tensor,数据类型为float16、float32或者float64。

输出:

Tensor,输出shape为 (N,Cout,Hout,Wout)

异常:
  • ValueError - 如果 output_size 是tuple,并且 output_size 的长度不是2。

  • TypeError - 如果 input 不是Tensor。

  • TypeError - 如果 input 的数据类型不是float16、float32或者float64。

  • ValueError - 如果 input 的维度小于或等于 output_size 的维度。

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore as ms
>>> import numpy as np
>>> pool = ms.nn.AdaptiveAvgPool2d(2)
>>> input_x = ms.Tensor(np.array([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]), ms.float32)
>>> output = pool(input_x)
>>> result = output.shape
>>> print(result)
(3, 2, 2)