mindspore.dataset.text.UnicodeCharTokenizer
- class mindspore.dataset.text.UnicodeCharTokenizer(with_offsets=False)[源代码]
对输入字符串中的Unicode字符进行分词。
- 参数:
with_offsets (bool, 可选) - 是否输出各Token在原字符串中的起始和结束偏移量。默认值:
False
。
- 异常:
TypeError - 当 with_offsets 不为bool类型。
- 支持平台:
CPU
样例:
>>> import mindspore.dataset as ds >>> import mindspore.dataset.text as text >>> >>> # Use the transform in dataset pipeline mode >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"]) >>> >>> # If with_offsets=False, default output one column {["text", dtype=str]} >>> tokenizer_op = text.UnicodeCharTokenizer(with_offsets=False) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["text"]) ... break ['W' 'e' 'l' 'c' 'o' 'm' 'e' ' ' ' ' ' ' ' ' ' ' 'T' 'o' ' ' ' ' ' ' 'B' 'e' 'i' 'J' 'i' 'n' 'g' '!'] >>> >>> # If with_offsets=True, then output three columns {["token", dtype=str], ["offsets_start", dtype=uint32], >>> # ["offsets_limit", dtype=uint32]} >>> tokenizer_op = text.UnicodeCharTokenizer(with_offsets=True) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"]) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op, input_columns=["text"], ... output_columns=["token", "offsets_start", "offsets_limit"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["token"], item["offsets_start"], item["offsets_limit"]) ['W' 'e' 'l' 'c' 'o' 'm' 'e' ' ' ' ' ' ' ' ' ' ' 'T' 'o' ' ' ' ' ' ' 'B' 'e' 'i' 'J' 'i' 'n' 'g' '!'] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24] [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25] >>> >>> # Use the transform in eager mode >>> data = 'Welcome To BeiJing!' >>> output = text.UnicodeCharTokenizer(with_offsets=True)(data) >>> print(output) (array(['W', 'e', 'l', 'c', 'o', 'm', 'e', ' ', ' ', ' ', ' ', ' ', 'T', 'o', ' ', ' ', ' ', 'B', 'e', 'i', 'J', 'i', 'n', 'g', '!'], dtype='<U1'), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], dtype=uint32), array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], dtype=uint32))
- 教程样例: