mindspore.dataset.TedliumDataset
- class mindspore.dataset.TedliumDataset(dataset_dir, release, usage=None, extensions=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None)[源代码]
- Tedlium数据集。生成的数据集的列取决于源SPH文件和相应的STM文件。 - 生成的数据集有六列 [waveform, sample_rate, transcript, talk_id, speaker_id, identifier]。 列 waveform 的数据类型为float32,列 sample_rate 的数据类型为int32,列 transcript、列 talk_id、列 speaker_id 和列 identifier 的数据类型为string。 - 参数:
- dataset_dir (str) - 包含数据集文件的根目录路径。 
- release (str) - 指定数据集的发布版本,可以取值为 - 'release1'、- 'release2'或- 'release3'。
- usage (str, 可选) - 指定数据集的子集。 对于 release 为 - 'release1'或- 'release2',usage 可以是- 'train'、- 'test'、- 'dev'或- 'all'。 对于 release 为- 'release3', usage 只能是- 'all'。默认值:- None,读取全部样本。
- extensions (str, 可选) - 指定SPH文件的扩展名。默认值: - None,默认指定为- '.sph'。
- num_samples (int, 可选) - 指定从数据集中读取的样本数。默认值: - None,读取全部样本。
- num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值: - None,使用全局默认线程数(8),也可以通过- mindspore.dataset.config.set_num_parallel_workers()配置全局线程数。
- shuffle (bool, 可选) - 是否混洗数据集。默认值: - None。下表中会展示不同参数配置的预期行为。
- sampler (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值: - None。下表中会展示不同配置的预期行为。
- num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: - None。指定此参数后, num_samples 表示每个分片的最大样本数。
- shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: - None。只有当指定了 num_shards 时才能指定此参数。
- cache ( - DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值:- None,不使用缓存。
 
- 异常:
- RuntimeError - dataset_dir 路径下不包含任何数据文件。 
- RuntimeError - 同时指定了 sampler 和 shuffle 参数。 
- RuntimeError - 同时指定了 sampler 和 num_shards 参数或同时指定了 sampler 和 shard_id 参数。 
- RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。 
- RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。 
- ValueError - num_parallel_workers 参数超过系统最大线程数。 
- ValueError - 如果 shard_id 取值不在[0, num_shards )范围。 
 
 - 样例: - >>> import mindspore.dataset as ds >>> # 1) Get all train samples from TEDLIUM_release1 dataset in sequence. >>> dataset = ds.TedliumDataset(dataset_dir="/path/to/tedlium1_dataset_directory", ... release="release1", shuffle=False) >>> >>> # 2) Randomly select 10 samples from TEDLIUM_release2 dataset. >>> dataset = ds.TedliumDataset(dataset_dir="/path/to/tedlium2_dataset_directory", ... release="release2", num_samples=10, shuffle=True) >>> >>> # 3) Get samples from TEDLIUM_release-3 dataset for shard 0 in a 2-way distributed training. >>> dataset = ds.TedliumDataset(dataset_dir="/path/to/tedlium3_dataset_directory", ... release="release3", num_shards=2, shard_id=0) >>> >>> # In TEDLIUM dataset, each dictionary has keys : waveform, sample_rate, transcript, talk_id, >>> # speaker_id and identifier. - 教程样例:
 - 说明 - 入参 num_samples 、 shuffle 、 num_shards 、 shard_id 可用于控制数据集所使用的采样器,其与入参 sampler 搭配使用的效果如下。 - 参数 sampler 和 num_samples , shuffle , num_shards , shard_id 的不同组合得到的采样器 - 参数 sampler - 参数 num_shards / shard_id - 参数 shuffle - 参数 num_samples - 使用的采样器 - mindspore.dataset.Sampler 类型 - None - None - None - sampler - numpy.ndarray,list,tuple,int 类型 - / - / - num_samples - SubsetSampler(indices = sampler , num_samples = num_samples ) - iterable 类型 - / - / - num_samples - IterSampler(sampler = sampler , num_samples = num_samples ) - None - num_shards / shard_id - None / True - num_samples - DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = True , num_samples = num_samples ) - None - num_shards / shard_id - False - num_samples - DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = False , num_samples = num_samples ) - None - None - None / True - None - RandomSampler(num_samples = num_samples ) - None - None - None / True - num_samples - RandomSampler(replacement = True , num_samples = num_samples ) - None - None - False - num_samples - SequentialSampler(num_samples = num_samples ) - 关于TEDLIUM数据集: - TEDLIUM_release1数据集:TED-LUM语料库是英语TED演讲,有转录,采样频率为16kHz。包含了大约118小时的演讲。 - TEDLIUM_release2数据集:这是TED-LIUM语料库版本2,根据知识共享BY-NC-ND 3.0授权。所有会谈和文本均为TED会议有限责任公司的财产。TED-LIUM语料库是由音频谈话和他们的转录在TED网站上提供的。我们准备并过滤了这些数据,以便训练声学模型参加2011年口语翻译国际研讨会(LIUM英语/法语SLT系统在SLT任务中排名第一)。 - TEDLIUM_release-3数据集:这是TED-LIUM语料库版本3,根据知识共享BY-NC-ND 3.0授权。所有会谈和文本均为TED会议有限责任公司的财产。这个新的TED-LIUM版本是通过Ubiqus公司和LIUM(法国勒芒大学)的合作发布的。 - 可以将数据集文件解压缩到以下目录结构中,并由MindSpore的API读取。 - TEDLIUM release1与TEDLIUM release2的结构相同,只是数据不同。 - . └──TEDLIUM_release1 └── dev ├── sph ├── AlGore_2009.sph ├── BarrySchwartz_2005G.sph ├── stm ├── AlGore_2009.stm ├── BarrySchwartz_2005G.stm └── test ├── sph ├── AimeeMullins_2009P.sph ├── BillGates_2010.sph ├── stm ├── AimeeMullins_2009P.stm ├── BillGates_2010.stm └── train ├── sph ├── AaronHuey_2010X.sph ├── AdamGrosser_2007.sph ├── stm ├── AaronHuey_2010X.stm ├── AdamGrosser_2007.stm └── readme └── TEDLIUM.150k.dic- TEDLIUM release3目录结构稍有不同。 - . └──TEDLIUM_release-3 └── data ├── ctl ├── sph ├── 911Mothers_2010W.sph ├── AalaElKhani.sph ├── stm ├── 911Mothers_2010W.stm ├── AalaElKhani.stm └── doc └── legacy └── LM └── speaker-adaptation └── readme └── TEDLIUM.150k.dic- 引用: - @article{ title={TED-LIUM: an automatic speech recognition dedicated corpus}, author={A. Rousseau, P. Deléglise, Y. Estève}, journal={Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)}, year={May 2012}, biburl={https://www.openslr.org/7/} } @article{ title={Enhancing the TED-LIUM Corpus with Selected Data for Language Modeling and More TED Talks}, author={A. Rousseau, P. Deléglise, and Y. Estève}, journal={Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)}, year={May 2014}, biburl={https://www.openslr.org/19/} } @article{ title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation}, author={François Hernandez, Vincent Nguyen, Sahar Ghannay, Natalia Tomashenko, and Yannick Estève}, journal={the 20th International Conference on Speech and Computer (SPECOM 2018)}, year={September 2018}, biburl={https://www.openslr.org/51/} } 
预处理操作
| 对数据集对象执行给定操作函数。 | |
| 对传入的多个数据集对象进行拼接操作。 | |
| 通过自定义判断条件对数据集对象中的数据进行过滤。 | |
| 对数据集对象中每一条数据执行给定的数据处理,并将结果展平。 | |
| 给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。 | |
| 从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。 | |
| 对数据集对象按指定的列名进行重命名。 | |
| 重复此数据集 count 次。 | |
| 重置下一个epoch的数据集对象。 | |
| 将数据处理管道中正处理的数据保存为通用的数据集格式。 | |
| 通过创建 buffer_size 大小的缓存来混洗该数据集。 | |
| 跳过此数据集对象的前 count 条数据。 | |
| 将数据集拆分为多个不重叠的子数据集。 | |
| 截取数据集的前指定条数据。 | |
| 将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。 | 
Batch(批操作)
| 将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。 | |
| 根据数据的长度进行分桶。 | |
| 将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。 | 
迭代器
| 基于数据集对象创建迭代器。 | |
| 基于数据集对象创建迭代器。 | 
数据集属性
| 获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。 | |
| 获取类别名称到类别索引的映射字典。 | |
| 返回数据集对象中包含的列名。 | |
| 返回一个epoch中的batch数。 | |
| 获取 RepeatDataset 中定义的repeat操作的次数。 | |
| 获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。 | |
| 获取数据集对象中所有样本的类别数目。 | |
| 获取数据集对象中每列数据的shape。 | |
| 获取数据集对象中每列数据的数据类型。 | 
应用采样方法
| 为当前数据集添加子采样器。 | |
| 替换当前数据集的最末子采样器,保持父采样器不变。 | 
其他方法
| 释放阻塞条件并使用给定数据触发回调函数。 | |
| 为同步操作在数据集对象上添加阻塞条件。 | |
| 将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。 |