mindspore.dataset.SogouNewsDataset
- class mindspore.dataset.SogouNewsDataset(dataset_dir, usage=None, num_samples=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, num_parallel_workers=None, cache=None)[源代码]
- Sogou New数据集。 - 生成的数据集有三列 [index, title, content],三列的数据类型均为string。 - 参数:
- dataset_dir (str) - 包含数据集文件的根目录路径。 
- usage (str, 可选) - 指定数据集的子集,可取值为 - 'train'、- 'test'或- 'all'。默认值:- None,读取全部样本。 取值为- 'train'时将会读取45万个训练样本,取值为- 'test'时将会读取6万个测试样本,取值为- 'all'时将会读取全部51万个样本。默认值:- None,读取全部样本。
- num_samples (int, 可选) - 指定从数据集中读取的样本数。默认值: - None, 读取全部样本。
- shuffle (Union[bool, - Shuffle], 可选) - 每个epoch中数据混洗的模式,支持传入bool类型与枚举类型进行指定。默认值:- Shuffle.GLOBAL。 如果 shuffle 为- False,则不混洗,如果 shuffle 为- True,等同于将 shuffle 设置为- mindspore.dataset.Shuffle.GLOBAL。 通过传入枚举变量设置数据混洗的模式:- Shuffle.GLOBAL:混洗文件和样本。
- Shuffle.FILES:仅混洗文件。
 
- num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: - None。指定此参数后, num_samples 表示每个分片的最大样本数。
- shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: - None。只有当指定了 num_shards 时才能指定此参数。
- num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值: - None,使用全局默认线程数(8),也可以通过- mindspore.dataset.config.set_num_parallel_workers()配置全局线程数。
- cache ( - DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值:- None,不使用缓存。
 
- 异常:
- RuntimeError - dataset_dir 参数所指向的文件目录不存在或缺少数据集文件。 
- RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。 
- RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。 
- ValueError - num_parallel_workers 参数超过系统最大线程数。 
 
 - 样例: - >>> import mindspore.dataset as ds >>> sogou_news_dataset_dir = "/path/to/sogou_news_dataset_dir" >>> dataset = ds.SogouNewsDataset(dataset_dir=sogou_news_dataset_dir, usage='all') - 教程样例:
 - 关于SogouNew数据集: - SogouNews 数据集包括3列,分别对应类别索引(1到5)、标题和内容。 标题和内容使用双引号(“)进行转义,任何内部双引号都使用2个双引号(“”)进行转义。 新行使用反斜杠进行转义,后跟“n”字符,即 “n”。 - 以下是原始SogouNew数据集结构,可以将数据集文件解压缩到此目录结构中,并由MindSpore的API读取: - . └── sogou_news_dir ├── classes.txt ├── readme.txt ├── test.csv └── train.csv- 引用: - @misc{zhang2015characterlevel, title={Character-level Convolutional Networks for Text Classification}, author={Xiang Zhang and Junbo Zhao and Yann LeCun}, year={2015}, eprint={1509.01626}, archivePrefix={arXiv}, primaryClass={cs.LG} } 
预处理操作
| 对数据集对象执行给定操作函数。 | |
| 对传入的多个数据集对象进行拼接操作。 | |
| 通过自定义判断条件对数据集对象中的数据进行过滤。 | |
| 对数据集对象中每一条数据执行给定的数据处理,并将结果展平。 | |
| 给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。 | |
| 从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。 | |
| 对数据集对象按指定的列名进行重命名。 | |
| 重复此数据集 count 次。 | |
| 重置下一个epoch的数据集对象。 | |
| 将数据处理管道中正处理的数据保存为通用的数据集格式。 | |
| 通过创建 buffer_size 大小的缓存来混洗该数据集。 | |
| 跳过此数据集对象的前 count 条数据。 | |
| 将数据集拆分为多个不重叠的子数据集。 | |
| 截取数据集的前指定条数据。 | |
| 将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。 | 
Batch(批操作)
| 将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。 | |
| 根据数据的长度进行分桶。 | |
| 将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。 | 
迭代器
| 基于数据集对象创建迭代器。 | |
| 基于数据集对象创建迭代器。 | 
数据集属性
| 获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。 | |
| 获取类别名称到类别索引的映射字典。 | |
| 返回数据集对象中包含的列名。 | |
| 返回一个epoch中的batch数。 | |
| 获取 RepeatDataset 中定义的repeat操作的次数。 | |
| 获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。 | |
| 获取数据集对象中所有样本的类别数目。 | |
| 获取数据集对象中每列数据的shape。 | |
| 获取数据集对象中每列数据的数据类型。 | 
应用采样方法
| 为当前数据集添加子采样器。 | |
| 替换当前数据集的最末子采样器,保持父采样器不变。 | 
其他方法
| 释放阻塞条件并使用给定数据触发回调函数。 | |
| 为同步操作在数据集对象上添加阻塞条件。 | |
| 将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。 |