# 比较与torch.utils.data.SequentialSampler的差异 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/SequentialSampler.md) ## torch.utils.data.SequentialSampler ```python class torch.utils.data.SequentialSampler(data_source) ``` 更多内容详见[torch.utils.data.SequentialSampler](https://pytorch.org/docs/1.8.1/data.html#torch.utils.data.SequentialSampler)。 ## mindspore.dataset.SequentialSampler ```python class mindspore.dataset.SequentialSampler(start_index=None, num_samples=None) ``` 更多内容详见[mindspore.dataset.SequentialSampler](https://mindspore.cn/docs/zh-CN/r2.3.0rc1/api_python/dataset/mindspore.dataset.SequentialSampler.html)。 ## 差异对比 PyTorch:按数据集的顺序采样数据集样本。 MindSpore:按数据集的顺序采样数据集样本,支持指定顺序索引和样本数量。 | 分类 | 子类 |PyTorch | MindSpore | 差异 | | --- | --- | --- | --- |--- | |参数 | 参数1 | data_source | - | 被采样的数据集对象,MindSpore不需要传入 | | | 参数2 | - | start_index | 采样的起始样本索引 | | | 参数3 | - | num_samples | 指定采样器返回的样本数量 | ## 代码示例 ```python import torch from torch.utils.data import SequentialSampler class MyMapDataset(torch.utils.data.Dataset): def __init__(self): super(MyMapDataset).__init__() self.data = [i for i in range(4)] def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) ds = MyMapDataset() sampler = SequentialSampler(ds) dataloader = torch.utils.data.DataLoader(ds, sampler=sampler) for data in dataloader: print(data) # Out: # tensor([0]) # tensor([1]) # tensor([2]) # tensor([3]) ``` ```python import mindspore as ms from mindspore.dataset import SequentialSampler class MyMapDataset(): def __init__(self): super(MyMapDataset).__init__() self.data = [i for i in range(4)] def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) ds = MyMapDataset() sampler = SequentialSampler() dataloader = ms.dataset.GeneratorDataset(ds, column_names=["data"], sampler=sampler) for data in dataloader: print(data) # Out: # [Tensor(shape=[], dtype=Int64, value= 0)] # [Tensor(shape=[], dtype=Int64, value= 1)] # [Tensor(shape=[], dtype=Int64, value= 2)] # [Tensor(shape=[], dtype=Int64, value= 3)] ```