# 比较与torchaudio.transforms.Resample的差异 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Resample.md) ## torchaudio.transforms.Resample ```python class torchaudio.transforms.Resample(orig_freq: int = 16000, new_freq: int = 16000, resampling_method: str = 'sinc_interpolation') ``` 更多内容详见[torchaudio.transforms.Resample](https://pytorch.org/audio/0.8.0/transforms.html#torchaudio.transforms.Resample.html)。 ## mindspore.dataset.audio.Resample ```python class mindspore.dataset.audio.Resample(orig_freq=16000, new_freq=16000, resample_method=ResampleMethod.SINC_INTERPOLATION, lowpass_filter_width=6, rolloff=0.99, beta=None) ``` 更多内容详见[mindspore.dataset.audio.Resample](https://mindspore.cn/docs/zh-CN/r2.3.0rc1/api_python/dataset_audio/mindspore.dataset.audio.Resample.html#mindspore.dataset.audio.Resample)。 ## 差异对比 PyTorch:将信号从一个频率重采样至另一个频率。 MindSpore:将信号从一个频率重采样至另一个频率。支持额外的信号滤波处理。 | 分类 | 子类 |PyTorch | MindSpore | 差异 | | --- | --- | --- | --- |--- | |参数 | 参数1 | orig_freq | orig_freq | - | | | 参数2 | new_freq | new_freq | - | | | 参数3 | resampling_method | resample_method | - | | | 参数4 | - | lowpass_filter_width | 滤波器的带宽 | | | 参数5 | - | rolloff | 滤波器的滚降频率 | | | 参数6 | - | beta | Kaiser窗的形状参数 | ## 代码示例 ```python import numpy as np fake_input = np.array([[[[-0.2197528, 0.3821656]]], [[[0.57418776, 0.46741104]]], [[[0.76986176, -0.5793846]]]]).astype(np.float32) # PyTorch import torch import torchaudio.transforms as T transformer = T.Resample(orig_freq=16000, new_freq=24000) torch_result = transformer(torch.from_numpy(fake_input)) print(torch_result) # Out: tensor([[[[-0.2140, 0.2226, 0.3510]]], # [[[ 0.5728, 0.6145, 0.2789]]], # [[[ 0.7568, -0.1601, -0.6101]]]]) # MindSpore import mindspore.dataset.audio as audio transformer = audio.Resample(orig_freq=16000, new_freq=24000) ms_result = transformer(fake_input) print(ms_result) # Out: [[[[-0.21398525 0.22255361 0.35099414]]] # [[[ 0.5728122 0.614469 0.2788692 ]]] # [[[ 0.75675076 -0.16008556 -0.61005235]]]] ```