# 比较与torchvision.datasets.Cityscapes的差异 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cityscapes.md) ## torchvision.datasets.Cityscapes ```python class torchvision.datasets.Cityscapes( root: str, split: str, mode: str, target_type: str or list, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None ) ``` 更多内容详见[torchvision.datasets.Cityscapes](https://pytorch.org/vision/0.9/datasets.html#cityscapes)。 ## mindspore.dataset.CityscapesDataset ```python class mindspore.dataset.CityscapesDataset( dataset_dir, usage='train', quality_mode='fine', task='instance', num_samples=None, num_parallel_workers=None, shuffle=None, decode=None, sampler=None, num_shards=None, shard_id=None, cache=None ) ``` 更多内容详见[mindspore.dataset.CityscapesDataset](https://www.mindspore.cn/docs/zh-CN/r2.3.0rc1/api_python/dataset/mindspore.dataset.CityscapesDataset.html)。 ## 差异对比 PyTorch:读取Cityscapes数据集。 MindSpore:读取Cityscapes数据集,不支持下载。 | 分类 | 子类 |PyTorch | MindSpore | 差异 | | --- | --- | --- | --- |--- | |参数 | 参数1 | root | dataset_dir | - | | | 参数2 | split | usage | - | | | 参数3 | mode | quality_mode | - | | | 参数4 | target_type | task | - | | | 参数5 | transform | - | MindSpore通过 `mindspore.dataset.map` 操作支持 | | | 参数6 | target_transform | - | MindSpore通过 `mindspore.dataset.map` 操作支持 | | | 参数7 | transforms | - | MindSpore通过 `mindspore.dataset.map` 操作支持 | | | 参数8 | - | num_samples | 指定从数据集中读取的样本数 | | | 参数9 | - | num_parallel_workers | 指定读取数据的工作线程数 | | | 参数10 | - | shuffle | 指定是否混洗数据集 | | | 参数11 | - | decode | 解码读取的图片 | | | 参数12 | - | sampler | 指定从数据集中选取样本的采样器 | | | 参数13 | - | num_shards | 指定分布式训练时将数据集进行划分的分片数 | | | 参数14 | - | shard_id | 指定分布式训练时使用的分片ID号 | | | 参数15 | - | cache | 指定单节点数据缓存服务 | ## 代码示例 ```python # PyTorch import torchvision.transforms as T import torchvision.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/dataset_directory/" dataset = datasets.Cityscapes(root, split='train', mode='fine', target_type='semantic') dataloader = DataLoader(dataset) # MindSpore import mindspore.dataset as ds import mindspore.dataset.vision as vision # Download the dataset files, unzip into the following structure # . # └── "/path/to/dataset_directory" # ├── leftImg8bit # | ├── train # | | ├── aachen # | | | ├── aachen_000000_000019_leftImg8bit.png # | | | ├── aachen_000001_000019_leftImg8bit.png # | | | ├── ... # | | ├── bochum # | | | ├── ... # | | ├── ... # | ├── test # | | ├── ... # | ├── val # | | ├── ... # └── gtFine # ├── train # | ├── aachen # | | ├── aachen_000000_000019_gtFine_color.png # | | ├── aachen_000000_000019_gtFine_instanceIds.png # | | ├── aachen_000000_000019_gtFine_labelIds.png # | | ├── aachen_000000_000019_gtFine_polygons.json # | | ├── aachen_000001_000019_gtFine_color.png # | | ├── aachen_000001_000019_gtFine_instanceIds.png # | | ├── aachen_000001_000019_gtFine_labelIds.png # | | ├── aachen_000001_000019_gtFine_polygons.json # | | ├── ... # | ├── bochum # | | ├── ... # | ├── ... # ├── test # | ├── ... # └── val # ├── ... root = "/path/to/dataset_directory/" ms_dataloader = ds.CityscapesDataset(root, usage='train') ms_dataloader = ms_dataloader.map(vision.RandomCrop((28, 28)), ["image"]) ```