# 比较与torch.optim.Adam的差异 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Adam.md) ## torch.optim.Adam ```python class torch.optim.Adam( params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False ) ``` 更多内容详见[torch.optim.Adam](https://pytorch.org/docs/1.8.0/optim.html#torch.optim.Adam)。 ## mindspore.nn.Adam ```python class mindspore.nn.Adam( params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, use_nesterov=False, weight_decay=0.0, loss_scale=1.0, use_amsgrad=False, **kwargs ) ``` 更多内容详见[mindspore.nn.Adam](https://mindspore.cn/docs/zh-CN/r2.3.0rc1/api_python/nn/mindspore.nn.Adam.html#mindspore.nn.Adam)。 ## 差异对比 `mindspore.nn.Adam` 可以覆盖 `torch.optim.Adam` 的功能,且默认参数下功能一致。`mindspore.nn.Adam` 中相比PyTorch多出的入参用于控制其他功能,详情请参考官网注释。 | 分类 | 子类 | PyTorch | MindSpore | 差异 | | ---- |-----|---------------------------|---------------|--------------------------------------------------| | 参数 | 参数1 | params | params | 一致 | | | 参数2 | lr | learning_rate | 功能一致,参数名不同 | | | 参数3 | eps | eps | 一致 | | | 参数4 | weight_decay | weight_decay | 一致 | | | 参数5 | amsgrad | use_amsgrad | 功能一致,参数名不同 | | | 参数6 | betas | beta1, beta2 | 功能一致,参数名不同 | | | 参数7 | - | use_locking | MindSpore的 `use_locking` 表示是否更新累加器,PyTorch无此参数 | | | 参数8 | - | use_nesterov | MindSpore的 `use_nesterov` 表示是否使用NAG算法更新梯度,PyTorch无此参数 | | | 参数9 | - | loss_scale | MindSpore的 `loss_scale` 为梯度缩放系数,PyTorch无此参数 | | | 参数10 | - | kwargs | MindSpore中 `kwargs` 中传入的入参名为"use_lazy"和"use_offload"的参数可被解析生效,表示是否使用Lazy Adam算法或Offload Adam算法,PyTorch无此参数 | ### 代码示例 ```python # MindSpore import mindspore from mindspore import nn net = nn.Dense(2, 3) optimizer = nn.Adam(net.trainable_params()) criterion = nn.MAELoss(reduction="mean") def forward_fn(data, label): logits = net(data) loss = criterion(logits, label) return loss, logits grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) def train_step(data, label): (loss, _), grads = grad_fn(data, label) optimizer(grads) return loss # PyTorch import torch model = torch.nn.Linear(2, 3) criterion = torch.nn.L1Loss(reduction='mean') optimizer = torch.optim.Adam(model.parameters()) def train_step(data, label): optimizer.zero_grad() output = model(data) loss = criterion(output, label) loss.backward() optimizer.step() ```