比较与tf.expand_dims的差异
tf.expand_dims
tf.expand_dims(x, axis, name=None) -> Tensor
更多内容详见tf.expand_dims。
mindspore.ops.expand_dims
mindspore.ops.expand_dims(input_x, axis) -> Tensor
更多内容详见mindspore.ops.expand_dims。
差异对比
TensorFlow:对输入x在给定的轴上添加额外维度。
MindSpore:MindSpore此API实现功能与TensorFlow一致,仅参数名不同。
分类 |
子类 |
TensorFlow |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
x |
input_x |
功能一致,参数名不同 |
参数2 |
axis |
axis |
- |
|
参数3 |
name |
- |
不涉及 |
代码示例1
两API实现功能一致,用法相同。
# TensorFlow
import numpy as np
import tensorflow as tf
x = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.float32)
axis = 1
out = tf.expand_dims (x, axis).numpy()
print(out)
# [[[ 1. 2. 3. 4.]]
# [[ 5. 6. 7. 8.]]
# [[ 9. 10. 11. 12.]]]
# MindSpore
import mindspore
import numpy as np
import mindspore.ops as ops
from mindspore import Tensor
input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
axis = 1
output = ops.expand_dims(input_params, axis)
print(output)
# [[[ 1. 2. 3. 4.]]
# [[ 5. 6. 7. 8.]]
# [[ 9. 10. 11. 12.]]]
代码示例2
两API实现功能一致,用法相同。
# TensorFlow
import numpy as np
import tensorflow as tf
x = np.array([[1,1,1]], dtype=np.float32)
axis = 2
out = tf.expand_dims (x, axis).numpy()
print(out)
# [[[1.]
# [1.]
# [1.]]]
# MindSpore
import mindspore
import numpy as np
import mindspore.ops as ops
from mindspore import Tensor
input_params = Tensor(np.array([[1,1,1]]), mindspore.float32)
axis = 2
output = ops.expand_dims(input_params, axis)
print(output)
# [[[1.]
# [1.]
# [1.]]]