比较与tf.keras.optimizers.Adam的差异

查看源文件

tf.keras.optimizers.Adam

tf.keras.optimizers.Adam(
    learning_rate=0.001,
    beta_1=0.9,
    beta_2=0.999,
    epsilon=1e-07,
    amsgrad=False,
    name='Adam',
    **kwargs
) -> Tensor

更多内容详见tf.keras.optimizers.Adam

mindspore.nn.Adam

class mindspore.nn.Adam(
    params,
    learning_rate=1e-3,
    beta1=0.9,
    beta2=0.999,
    eps=1e-8,
    use_locking=False,
    use_nesterov=False,
    weight_decay=0.0,
    loss_scale=1.0,
    use_amsgrad=False,
    **kwargs
)(gradients) -> Tensor

更多内容详见mindspore.nn.Adam

差异对比

TensorFlow:实现Adam算法的优化器功能。

MindSpore:MindSpore此API实现功能与TensorFlow基本一致。

分类

子类

TensorFlow

MindSpore

差异

参数

参数1

learning_rate

learning_rate

-

参数2

beta_1

beta1

功能一致,参数名不同

参数3

beta_2

beta2

功能一致,参数名不同

参数4

epsilon

eps

功能一致,参数名和默认值不同

参数5

amsgrad

use_amsgrad

功能一致,参数名不同

参数6

name

-

不涉及

参数7

**kwargs

**kwargs

不涉及

参数8

-

params

由Parameter类组成的列表或字典组成的列表,TensorFlow中无此参数

参数9

-

use_locking

MindSpore中可以根据该参数,决定是否对参数更新加锁保护。TensorFlow无此参数

参数10

-

use_nesterov

MindSpore中可以根据该参数,决定是否使用Nesterov Accelerated Gradient(NAG)算法更新梯度。TensorFlow无此参数

参数11

-

weight_decay

权重衰减(L2 penalty),默认值:0.0,TensorFlow中无此参数

参数12

-

loss_scale

梯度缩放系数,默认值:1.0,TensorFlow中无此参数

输入

单输入

-

gradients

params的梯度,TensorFlow中无此输入

代码示例

两API实现功能一致。

# TensorFlow
import tensorflow as tf
import numpy as np
input_n = 2
output_c = 2
input_channels = 2
output_channels = 2
dtype = np.float32
lr = 0.001
epoch = 100
initial_accumulator_value = 0.1
eps = 1e-7
input_np = np.array([[1, 2], [3, 4]]).astype(dtype)
weight_np = np.array([[1, 2], [3, 4]]).astype(dtype)
bias_np = np.array([0.5, 0.5]).astype(dtype)
label_np = np.array([1,0]).astype(int)
label_np_onehot = np.zeros(shape=(input_n, output_c)).astype(dtype)
label_np_onehot[np.arange(input_n), label_np] = 1.0
tf.compat.v1.disable_eager_execution()
input_tf = tf.constant(input_np, dtype=np.float32)
label = tf.constant(label_np_onehot)
net = tf.compat.v1.layers.dense(
    inputs=input_tf,
    units=output_channels,
    use_bias=True,
    kernel_initializer=tf.compat.v1.constant_initializer(
        weight_np.transpose(1, 0),
        dtype=np.float32
    ),
    bias_initializer=tf.compat.v1.constant_initializer(bias_np,dtype=np.float32)
)
criterion = tf.compat.v1.losses.softmax_cross_entropy(
    onehot_labels=label,
    logits=net,
    reduction=tf.compat.v1.losses.Reduction.MEAN
)
opt = tf.compat.v1.train.AdamOptimizer(learning_rate=lr, epsilon=1e-8).minimize(criterion)
init = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as ss:
    ss.run(init)
    num = epoch
    for _ in range(0, num):
        criterion.eval()
        ss.run(opt)
    output = net.eval()
print(output.astype(dtype))
# [[ 5.898781 11.101219]
#  [12.297218 24.702782]]

# MindSpore
from mindspore import Tensor
from mindspore.nn import Dense
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.nn import TrainOneStepCell
from mindspore.nn import WithLossCell
from mindspore.nn import Adam
import numpy as np
input_n = 2
output_c = 2
input_channels = 2
output_channels = 2
dtype = np.float32
lr = 0.001
epoch = 100
accum = 0.1
loss_scale = 1.0
weight_decay = 0
input_np = np.array([[1, 2], [3, 4]]).astype(dtype)
weight_np = np.array([[1, 2], [3, 4]]).astype(dtype)
bias_np = np.array([0.5, 0.5]).astype(dtype)
label_np = np.array([1, 0]).astype(int)
label_np_onehot = np.zeros(shape=(input_n, output_c)).astype(dtype)
label_np_onehot[np.arange(input_n), label_np] = 1.0
input_me = Tensor(input_np.copy())
weight = Tensor(weight_np.copy())
label = Tensor(label_np_onehot.copy())
bias = Tensor(bias_np.copy())
net = Dense(
    in_channels=input_channels,
    out_channels=output_channels,
    weight_init=weight,
    bias_init=bias,
    has_bias=True
)
criterion = SoftmaxCrossEntropyWithLogits(reduction='mean')
optimizer = Adam(params=net.trainable_params(), eps=1e-8, learning_rate=lr)
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer)
train_network.set_train()
num = epoch
for _ in range(0, num):
    train_network(input_me, label)
output = net(input_me)
print(output.asnumpy())
# [[ 5.8998876 11.100113 ]
#  [12.299808  24.700195 ]]