比较与torch.nn.BatchNorm1d的差异

查看源文件

torch.nn.BatchNorm1d

class torch.nn.BatchNorm1d(
    num_features,
    eps=1e-05,
    momentum=0.1,
    affine=True,
    track_running_stats=True
)(input) -> Tensor

更多内容详见torch.nn.BatchNorm1d

mindspore.nn.BatchNorm1d

class mindspore.nn.BatchNorm1d(
    num_features,
    eps=1e-5,
    momentum=0.9,
    affine=True,
    gamma_init='ones',
    beta_init='zeros',
    moving_mean_init='zeros',
    moving_var_init='ones',
    use_batch_statistics=None,
    data_format='NCHW'
)(x) -> Tensor

更多内容详见mindspore.nn.BatchNorm1d

差异对比

PyTorch:对输入的二维或三维数据进行批归一化。

MindSpore:MindSpore此API实现功能与PyTorch基本一致。MindSpore中momentum参数默认值为0.9,与PyTorch的momentum转换关系为1-momentum,默认值行为与PyTorch相同;训练以及推理时的参数更新策略和PyTorch有所不同,详细区别请参考与PyTorch典型区别-BatchNorm

分类

子类

PyTorch

MindSpore

差异

参数

参数1

num_features

num_features

-

参数2

eps

eps

-

参数3

momentum

momentum

功能一致,但PyTorch中的默认值是0.1,MindSpore中是0.9,与PyTorch的momentum转换关系为1-momentum,默认值行为与PyTorch相同

参数4

affine

affine

-

参数5

track_running_stats

use_batch_statistics

功能一致,不同值对应的默认方式不同,详细区别请参考与PyTorch典型区别-nn.BatchNorm2d

参数6

-

gamma_init

PyTorch无此参数,MindSpore可以初始化参数gamma的值

参数7

-

beta_init

PyTorch无此参数,MindSpore可以初始化参数beta的值

参数8

-

moving_mean_init

PyTorch无此参数,MindSpore可以初始化参数moving_mean的值

参数9

-

moving_var_init

PyTorch无此参数,MindSpore可以初始化参数moving_var的值

参数10

-

data_format

PyTorch无此参数

输入

单输入

input

x

接口输入,功能一致,仅参数名不同

代码示例

两API实现功能一致,用法相同。

# PyTorch
import torch
import numpy as np
from torch import nn, tensor

net = nn.BatchNorm1d(4, affine=False, momentum=0.1)
x = tensor(np.array([[0.7, 0.5, 0.5, 0.6], [0.5, 0.4, 0.6, 0.9]]).astype(np.float32))
output = net(x)
print(output.detach().numpy())
# [[ 0.9995001   0.9980063  -0.998006   -0.99977785]
#  [-0.9995007  -0.9980057   0.998006    0.99977785]]

# MindSpore
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor

net = nn.BatchNorm1d(num_features=4, affine=False, momentum=0.9)
net.set_train()
# BatchNorm1d<num_features=4, eps=1e-05, momentum=0.9, gamma=Parameter (name=gamma, shape=(4,), dtype=Float32, requires_grad=False), beta=Parameter (name=beta, shape=(4,), dtype=Float32, requires_grad=False), moving_mean=Parameter (name=mean, shape=(4,), dtype=Float32, requires_grad=False), moving_variance=Parameter (name=variance, shape=(4,),dtype=Float32, requires_grad=False)>

x = Tensor(np.array([[0.7, 0.5, 0.5, 0.6], [0.5, 0.4, 0.6, 0.9]]).astype(np.float32))
output = net(x)
print(output.asnumpy())
# [[ 0.9995001  0.9980063 -0.998006  -0.9997778]
#  [-0.9995007 -0.9980057  0.998006   0.9997778]]