比较与torch.nn.AvgPool3d的差异

查看源文件

torch.nn.AvgPool3d

torch.nn.AvgPool3d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)(input) -> Tensor

更多内容详见torch.nn.AvgPool3d

mindspore.nn.AvgPool3d

mindspore.nn.AvgPool3d(kernel_size=1, stride=1, pad_mode='valid', padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)(x) -> Tensor

更多内容详见mindspore.nn.AvgPool3d

差异对比

PyTorch:对由多个输入平面组成的输入信号应用二维平均池化。

MindSpore:MindSpore此API实现功能同时兼容TensorFlow和PyTorch,pad_mode 为 “valid” 或者 “same” 时,功能与TensorFlow一致,pad_mode 为 “pad” 时,功能与PyTorch一致,MindSpore相比PyTorch1.8.1额外支持了维度为4的输入,与PyTorch1.12一致。

分类

子类

PyTorch

MindSpore

差异

参数

参数1

kernel_size

kernel_size

功能一致,PyTorch无默认值

参数2

stride

stride

功能一致,参数默认值不同

参数3

padding

padding

功能一致

参数4

ceil_mode

ceil_mode

功能一致

参数5

count_include_pad

count_include_pad

功能一致

参数6

divisor_override

divisor_override

功能一致

参数7

-

pad_mode

MindSpore指定池化的填充方式,可选值为”same”,”valid” 或者 “pad”,PyTorch无此参数

输入

单输入

input

x

功能一致,参数名不同

代码示例

两API实现功能一致,用法相同。

# PyTorch
import torch
import torch.nn as nn

m = nn.AvgPool3d(kernel_size=1, stride=1)
input_x = torch.tensor([[[[1, 0, 1], [0, 1, 1]]]],dtype=torch.float32)
output = m(input_x)
print(output.numpy())
# [[[[1. 0. 1.]
#    [0. 1. 1.]]]]

# MindSpore
import mindspore
import mindspore.nn as nn
from mindspore import Tensor

pool = nn.AvgPool3d(kernel_size=1, stride=1)
x = Tensor([[[[1, 0, 1], [0, 1, 1]]]], dtype=mindspore.float32)
output = pool(x)
print(output)
# [[[[1. 0. 1.]
#    [0. 1. 1.]]]]

代码示例2

使用pad模式保证功能一致。

import torch
import mindspore.nn as nn
import mindspore.ops as ops

pool = nn.AvgPool3d(4, stride=1, ceil_mode=True, pad_mode='pad', padding=2)
x1 = ops.randn(6, 6, 8, 8, 8)
output = pool(x1)
print(output.shape)
# (6, 6, 9, 9, 9)

pool = torch.nn.AvgPool3d(4, stride=1, ceil_mode=True, padding=2)
x1 = torch.randn(6, 6, 8, 8, 8)
output = pool(x1)
print(output.shape)
# torch.Size([6, 6, 9, 9, 9])