# 比较与torch.nn.GRUCell的差异 [](https://gitee.com/mindspore/docs/blob/r2.1/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/GRUCell.md) ## torch.nn.GRUCell ```text class torch.nn.GRUCell( input_size, hidden_size, bias=True)(input, hidden) -> Tensor ``` 更多内容详见[torch.nn.GRUCell](https://pytorch.org/docs/1.8.1/generated/torch.nn.GRUCell.html)。 ## mindspore.nn.GRUCell ```text class mindspore.nn.GRUCell( input_size: int, hidden_size: int, has_bias: bool=True)(x, hx) -> Tensor ``` 更多内容详见[mindspore.nn.GRUCell](https://www.mindspore.cn/docs/zh-CN/r2.1/api_python/nn/mindspore.nn.GRUCell.html)。 ## 差异对比 PyTorch:循环神经网络单元。 MindSpore:MindSpore此API实现功能与PyTorch基本一致。 | 分类 | 子类 |PyTorch | MindSpore | 差异 | | --- | --- | --- | --- |---| |参数 | 参数1 | input_size | input_size |- | | | 参数2 | hidden_size | hidden_size | - | | | 参数3 | bias | has_bias | 功能一致,参数名不同 | |输入 | 输入1 | input | x | 功能一致,参数名不同 | | | 输入2 | hidden | hx | 功能一致,参数名不同 | ### 代码示例1 ```python # PyTorch import torch from torch import tensor import numpy as np grucell = torch.nn.GRUCell(2, 3, bias=False) input = torch.tensor(np.array([[3.0, 4.0]]).astype(np.float32)) hidden = torch.tensor(np.array([[1.0, 2.0, 3]]).astype(np.float32)) output = grucell(input, hidden) print(output) # tensor([[ 0.9948, 0.0913, -0.1633]], grad_fn=<AddBackward0>) # MindSpore import mindspore.nn as nn from mindspore import Tensor import numpy as np grucell = nn.GRUCell(2, 3, has_bias=False) x = Tensor(np.array([[3.0, 4.0]]).astype(np.float32)) hx = Tensor(np.array([[1.0, 2.0, 3]]).astype(np.float32)) output = grucell(x, hx) print(output) # [[-0.94861907 0.6191679 2.1289415 ]] ```