# 比较与torch.nn.BatchNorm3d的差异 [](https://gitee.com/mindspore/docs/blob/r2.1/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/BatchNorm3d.md) ## torch.nn.BatchNorm3d ```text class torch.nn.BatchNorm3d( num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True )(input) -> Tensor ``` 更多内容详见[torch.nn.BatchNorm3d](https://pytorch.org/docs/1.8.1/generated/torch.nn.BatchNorm3d.html)。 ## mindspore.nn.BatchNorm3d ```text class mindspore.nn.BatchNorm3d( num_features, eps=1e-5, momentum=0.9, affine=True, gamma_init='ones', beta_init='zeros', moving_mean_init='zeros', moving_var_init='ones', use_batch_statistics=None )(x) -> Tensor ``` 更多内容详见[mindspore.nn.BatchNorm3d](https://www.mindspore.cn/docs/zh-CN/r2.1/api_python/nn/mindspore.nn.BatchNorm3d.html)。 ## 差异对比 PyTorch:在五维输入(具有额外mini-batch和channel通道的三维输入)上应用批归一化处理,以避免内部协变量偏移。 MindSpore:此API实现功能与PyTorch基本一致,典型区别有两点。MindSpore中momentum参数默认值为0.9,与PyTorch的momentum转换关系为1-momentum,默认值行为与PyTorch相同;训练以及推理时的参数更新策略和PyTorch有所不同,详细区别请参考[与PyTorch典型区别-BatchNorm](https://www.mindspore.cn/docs/zh-CN/r2.1/migration_guide/typical_api_comparision.html#nn.BatchNorm2d)。 | 分类 | 子类 |PyTorch | MindSpore | 差异 | | --- | --- | --- | --- |---| | 参数 | 参数1 | num_features | num_features | - | | | 参数2 | eps | eps | - | | | 参数3 | momentum | momentum | 功能一致,但PyTorch中的默认值是0.1,MindSpore中是0.9,与PyTorch的momentum转换关系为1-momentum,默认值行为与PyTorch相同 | | | 参数4 | affine | affine |- | | | 参数5 | track_running_stats | use_batch_statistics | 功能一致,不同值对应的默认方式不同,详细区别请参考[与PyTorch典型区别-nn.BatchNorm](https://www.mindspore.cn/docs/zh-CN/r2.1/migration_guide/typical_api_comparision.html#nn.BatchNorm2d) | | | 参数6 | - | gamma_init |γ 参数的初始化方法,默认值:"ones" | | | 参数7 | - | beta_init |β 参数的初始化方法,默认值:"zeros" | | | 参数8 | - | moving_mean_init |动态平均值的初始化方法,默认值:"zeros" | | | 参数9 | - | moving_var_init |动态方差的初始化方法,默认值:"ones" | | 输入 | 单输入 | input | x | 接口输入,功能一致,仅参数名不同 | ### 代码示例 > PyTorch中,1-momentum后的值等于MindSpore的momentum,都使用mini-batch数据和学习参数进行训练。 ```python # PyTorch from torch import nn, tensor import numpy as np m = nn.BatchNorm3d(num_features=2, momentum=0.1) input_x = tensor(np.array([[[[[0.1, 0.2], [0.3, 0.4]]], [[[0.9, 1], [1.1, 1.2]]]]]).astype(np.float32)) output = m(input_x) print(output.detach().numpy()) # [[[[[-1.3411044 -0.44703478] # [ 0.4470349 1.3411044 ]]] # # # [[[-1.3411034 -0.44703388] # [ 0.44703573 1.3411053 ]]]]] # MindSpore from mindspore import Tensor, nn import numpy as np m = nn.BatchNorm3d(num_features=2, momentum=0.9) m.set_train() # BatchNorm3d< # (bn2d): BatchNorm2d<num_features=2, eps=1e-05, momentum=0.9, gamma=Parameter (name=bn2d.gamma, shape=(2,), dtype=Float32, requires_grad=True), beta=Parameter (name=bn2d.beta, shape=(2,), dtype=Float32, requires_grad=True), moving_mean=Parameter (name=bn2d.moving_mean, shape=(2,), dtype=Float32, requires_grad=False), moving_variance=Parameter (name=bn2d.moving_variance, shape=(2,), dtype=Float32, requires_grad=False)> # > input_x = Tensor(np.array([[[[[0.1, 0.2], [0.3, 0.4]]], [[[0.9, 1], [1.1, 1.2]]]]]).astype(np.float32)) output = m(input_x) print(output) # [[[[[-1.3411044 -0.44703478] # [ 0.4470349 1.3411044 ]]] # # # [[[-1.3411039 -0.44703427] # [ 0.44703534 1.341105 ]]]]] ```