mindspore.nn.probability.bijector.bijector 源代码

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Bijector"""
from mindspore import context
from mindspore.nn.cell import Cell
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
from mindspore.common import dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore import _checkparam as validator
from ..distribution._utils.utils import CheckTensor, cast_to_tensor, raise_type_error
from ..distribution import Distribution
from ..distribution import TransformedDistribution


[文档]class Bijector(Cell): """ Bijecotr class. A bijector perform a mapping from one distribution to the other via some function. If :math:`X` is a random variable following the original distribution, and :math:`g(x)` is the mapping function, then :math:`Y = g(X)` is the random variable following the transformed distribution. Args: is_constant_jacobian (bool): Whether the Bijector has constant derivative. Default: ``False`` . is_injective (bool): Whether the Bijector is a one-to-one mapping. Default: ``True`` . name (str): The name of the Bijector. Default: ``None`` . dtype (mindspore.dtype): The type of the distributions that the Bijector can operate on. Default: ``None`` . param (dict): The parameters used to initialize the Bijector. Default: ``None`` . Note: `dtype` of bijector represents the type of the distributions that the bijector could operate on. When `dtype` is None, there is no enforcement on the type of input value except that the input value has to be float type. During initialization, when `dtype` is None, there is no enforcement on the dtype of the parameters. All parameters should have the same float type, otherwise a TypeError will be raised. Specifically, the parameter type will follow the dtype of the input value, i.e. parameters of the bijector will be casted into the same type as input value when `dtype` is None. When `dtype` is specified, it is forcing the parameters and input value to be the same dtype as `dtype`. When the type of parameters or the type of the input value is not the same as `dtype`, a TypeError will be raised. Only subtype of mindspore.float_type can be used to specify bijector's `dtype`. Supported Platforms: ``Ascend`` ``GPU`` """ def __init__(self, is_constant_jacobian=False, is_injective=True, name=None, dtype=None, param=None): """ Constructor of Bijector class. """ super(Bijector, self).__init__() validator.check_value_type('name', name, [str], type(self).__name__) validator.check_value_type( 'is_constant_jacobian', is_constant_jacobian, [bool], name) validator.check_value_type('is_injective', is_injective, [bool], name) if dtype is not None: validator.check_type_name( "dtype", dtype, mstype.float_type, type(self).__name__) self._name = name self._dtype = dtype self._parameters = {} # parsing parameters for k in param.keys(): if k == 'param': continue if not(k == 'self' or k.startswith('_')): self._parameters[k] = param[k] # if no bijector is used as an argument during initialization if 'bijector' not in param.keys(): self._batch_shape = self._calc_batch_shape() self._is_scalar_batch = self._check_is_scalar_batch() self._is_constant_jacobian = is_constant_jacobian self._is_injective = is_injective self.context_mode = context.get_context('mode') self.checktensor = CheckTensor() # ops needed for the base class self.cast_base = P.Cast() self.dtype_base = P.DType() self.shape_base = P.Shape() self.fill_base = P.Fill() self.sametypeshape_base = inner.SameTypeShape() self.issubclass_base = inner.IsSubClass() @property def name(self): return self._name @property def dtype(self): return self._dtype @property def parameters(self): return self._parameters @property def is_constant_jacobian(self): return self._is_constant_jacobian @property def is_injective(self): return self._is_injective @property def batch_shape(self): return self._batch_shape @property def is_scalar_batch(self): return self._is_scalar_batch def _check_value_dtype(self, value): """ Firstly check if the input value is Tensor. Then, if `self.dtype` is None, check if the input tensor is or can be directly cast into a float tensor. If `self.dtype` is not None, check if the input tensor's dtype is `self.dtype`. """ self.checktensor(value, 'input value of bijector') value_type = self.dtype_base(value) if self.dtype is None: if self.issubclass_base(value_type, mstype.float_): return value return raise_type_error('input value of bijector', value_type, mstype.float_) dtype_tensor = self.fill_base(self.dtype, self.shape_base(value), 0.0) self.sametypeshape_base(value, dtype_tensor) return value def _shape_mapping(self, shape): shape_tensor = self.fill_base(self.parameter_type, shape, 0.0) dist_shape_tensor = self.fill_base( self.parameter_type, self.batch_shape, 0.0) return (shape_tensor + dist_shape_tensor).shape def shape_mapping(self, shape): return self._shape_mapping(shape) def _add_parameter(self, value, name): """ Cast `value` to a tensor and add it to `self.default_parameters`. Add `name` into and `self.parameter_names`. """ # initialize the attributes if they do not exist yet if not hasattr(self, 'default_parameters'): self.default_parameters = [] self.parameter_names = [] self.common_dtype = None # cast value to a tensor if it is not None if isinstance(value, bool) or value is None: raise TypeError("{} cannot be type {}".format(name, type(value))) value_t = Tensor(value) # if the bijector's dtype is not specified if self.dtype is None: if self.common_dtype is None: self.common_dtype = value_t.dtype elif value_t.dtype != self.common_dtype: raise TypeError( f"{name} should have the same dtype as other arguments.") # check if the parameters are casted into float-type tensors validator.check_type_name( f"dtype of {name}", value_t.dtype, mstype.float_type, type(self).__name__) # check if the dtype of the input_parameter agrees with the bijector's dtype elif value_t.dtype != self.dtype: raise TypeError( f"{name} should have the same dtype as the bijector's dtype.") self.default_parameters += [value,] self.parameter_names += [name,] return value_t def _calc_batch_shape(self): """ Calculate batch_shape based on parameters. """ if 'param_dict' not in self.parameters: return None param_dict = self.parameters.get('param_dict') broadcast_shape_tensor = None for value in param_dict.values(): if value is None: return None if broadcast_shape_tensor is None: broadcast_shape_tensor = cast_to_tensor(value) else: value = cast_to_tensor(value) broadcast_shape_tensor = (value + broadcast_shape_tensor) return broadcast_shape_tensor.shape def _check_is_scalar_batch(self): """ Check if the parameters used during initialization are scalars. """ if 'param_dict' not in self.parameters.keys(): return False param_dict = self.parameters.get('param_dict') for value in param_dict.values(): if value is None: continue if not isinstance(value, (int, float)): return False return True def _check_value(self, value, name): """ Check availability of `value` as a Tensor. """ self.checktensor(value, name) return value
[文档] def cast_param_by_value(self, value, para): """ Cast the parameter(s) of the bijector to be the same type of input_value. Args: value (Tensor): input value. para (Tensor): parameter(s) of the bijector. Returns: Tensor, the value of parameters after casting. """ local = self.cast_base(para, self.dtype_base(value)) return local
[文档] def forward(self, value, *args, **kwargs): """ Forward transformation: transform the input value to another distribution. Args: value (Tensor): the value of the input variables. *args (list): the list of positional arguments forwarded to subclasses. **kwargs (dict): the dictionary of keyword arguments forwarded to subclasses. Returns: Tensor, the value of the transformed random variable. """ return self._forward(value, *args, **kwargs)
[文档] def inverse(self, value, *args, **kwargs): """ Inverse transformation: transform the input value back to the original distribution. Args: value (Tensor): the value of the transformed variables. *args (list): the list of positional arguments forwarded to subclasses. **kwargs (dict): the dictionary of keyword arguments forwarded to subclasses. Returns: Tensor, the value of the input random variable. """ return self._inverse(value, *args, **kwargs)
[文档] def forward_log_jacobian(self, value, *args, **kwargs): """ Logarithm of the derivative of the forward transformation. Args: value (Tensor): the value of the input variables. *args (list): the list of positional arguments forwarded to subclasses. **kwargs (dict): the dictionary of keyword arguments forwarded to subclasses. Returns: Tensor, the value of logarithm of the derivative of the forward transformation. """ return self._forward_log_jacobian(value, *args, **kwargs)
[文档] def inverse_log_jacobian(self, value, *args, **kwargs): """ Logarithm of the derivative of the inverse transformation. Args: value (Tensor): the value of the transformed variables. *args (list): the list of positional arguments forwarded to subclasses. **kwargs (dict): the dictionary of keyword arguments forwarded to subclasses. Returns: Tensor, the value of logarithm of the derivative of the inverse transformation. """ return self._inverse_log_jacobian(value, *args, **kwargs)
def __call__(self, *args, **kwargs): """ Call Bijector directly. This __call__ may go into two directions: If args[0] is a distribution instance, the call will generate a new distribution derived from the input distribution. Otherwise, input[0] must be the name of a Bijector function, e.g. "forward", then this call will go in the construct and invoke the corresponding Bijector function. Args: *args: args[0] shall be either a distribution or the name of a Bijector function. """ if isinstance(args[0], Distribution): return TransformedDistribution(self, args[0]) return super(Bijector, self).__call__(*args, **kwargs)
[文档] def construct(self, name, *args, **kwargs): """ Override `construct` in Cell. Note: Names of supported functions include: 'forward', 'inverse', 'forward_log_jacobian', and 'inverse_log_jacobian'. Args: name (str): The name of the function. *args (list): the list of positional arguments forwarded to subclasses. **kwargs (dict): the dictionary of keyword arguments forwarded to subclasses. Returns: Tensor, the result of the function corresponding to name. """ if name == 'forward': return self.forward(*args, **kwargs) if name == 'inverse': return self.inverse(*args, **kwargs) if name == 'forward_log_jacobian': return self.forward_log_jacobian(*args, **kwargs) if name == 'inverse_log_jacobian': return self.inverse_log_jacobian(*args, **kwargs) raise Exception('Invalid name')