mindspore.mindrecord.filewriter 源代码

# Copyright 2019-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This module is to write data into mindrecord.
"""
import os
import platform
import queue
import re
import stat
import time
import multiprocessing as mp
import numpy as np
from mindspore import log as logger
from .shardwriter import ShardWriter
from .shardreader import ShardReader
from .shardheader import ShardHeader
from .shardindexgenerator import ShardIndexGenerator
from .shardutils import MIN_SHARD_COUNT, MAX_SHARD_COUNT, VALID_ATTRIBUTES, VALID_ARRAY_ATTRIBUTES, \
    check_filename, VALUE_TYPE_MAP, SUCCESS
from .common.exceptions import ParamValueError, ParamTypeError, MRMInvalidSchemaError, MRMDefineIndexError

__all__ = ['FileWriter']


[文档]class FileWriter: r""" Class to write user defined raw data into MindRecord files. Note: After the MindRecord file is generated, if the file name is changed, the file may fail to be read. Args: file_name (str): File name of MindRecord file. shard_num (int, optional): The Number of MindRecord files. It should be between [1, 1000]. Default: ``1`` . overwrite (bool, optional): Whether to overwrite if the file already exists. Default: ``False`` . Raises: ParamValueError: If `file_name` or `shard_num` or `overwrite` is invalid. Examples: >>> from mindspore.mindrecord import FileWriter >>> >>> writer = FileWriter(file_name="test.mindrecord", shard_num=1, overwrite=True) >>> schema_json = {"file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}} >>> schema_id = writer.add_schema(schema_json, "test_schema") >>> indexes = ["file_name", "label"] >>> status = writer.add_index(indexes) >>> for i in range(10): ... data = [{"file_name": str(i) + ".jpg", "label": i, ... "data": b"\x10c\xb3w\xa8\xee$o&<q\x8c\x8e(\xa2\x90\x90\x96\xbc\xb1\x1e\xd4QER\x13?\xff"}] ... status = writer.write_raw_data(data) >>> status = writer.commit() """ def __init__(self, file_name, shard_num=1, overwrite=False): if platform.system().lower() == "windows": file_name = file_name.replace("\\", "/") check_filename(file_name) self._file_name = file_name if shard_num is not None: if isinstance(shard_num, int): if shard_num < MIN_SHARD_COUNT or shard_num > MAX_SHARD_COUNT: raise ParamValueError("Parameter shard_num's value: {} should between {} and {}." .format(shard_num, MIN_SHARD_COUNT, MAX_SHARD_COUNT)) else: raise ParamValueError("Parameter shard_num's type is not int.") else: raise ParamValueError("Parameter shard_num is None.") if not isinstance(overwrite, bool): raise ParamValueError("Parameter overwrite's type is not bool.") self._shard_num = shard_num self._index_generator = True suffix_shard_size = len(str(self._shard_num - 1)) if self._shard_num == 1: self._paths = [self._file_name] else: self._paths = ["{}{}".format(self._file_name, str(x).rjust(suffix_shard_size, '0')) for x in range(self._shard_num)] self._overwrite = overwrite self._append = False self._flush = False self._header = ShardHeader() self._writer = ShardWriter() self._generator = None # parallel write mode self._parallel_writer = None self._writers = None self._queue = None self._workers = None self._index_workers = None
[文档] @classmethod def open_for_append(cls, file_name): r""" Open MindRecord file and get ready to append data. Args: file_name (str): String of MindRecord file name. Returns: FileWriter, file writer object for the opened MindRecord file. Raises: ParamValueError: If file_name is invalid. FileNameError: If path contains invalid characters. MRMOpenError: If failed to open MindRecord file. MRMOpenForAppendError: If failed to open file for appending data. Examples: >>> from mindspore.mindrecord import FileWriter >>> >>> data = [{"file_name": "0.jpg", "label": 0, ... "data": b"\x10c\xb3w\xa8\xee$o&<q\x8c\x8e(\xa2\x90\x90\x96\xbc\xb1\x1e\xd4QER\x13?\xff"}] >>> writer = FileWriter(file_name="test.mindrecord", shard_num=1, overwrite=True) >>> schema_json = {"file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}} >>> schema_id = writer.add_schema(schema_json, "test_schema") >>> status = writer.write_raw_data(data) >>> status = writer.commit() >>> >>> write_append = FileWriter.open_for_append("test.mindrecord") >>> for i in range(9): ... data = [{"file_name": str(i+1) + ".jpg", "label": i, ... "data": b"\x10c\xb3w\xa8\xee$o&<q\x8c\x8e(\xa2\x90\x90\x96\xbc\xb1\x1e\xd4QER\x13?\xff"}] ... status = write_append.write_raw_data(data) >>> status = write_append.commit() """ if platform.system().lower() == "windows": file_name = file_name.replace("\\", "/") check_filename(file_name) # construct ShardHeader reader = ShardReader() reader.open(file_name, False) header = ShardHeader(reader.get_header()) reader.close() instance = cls("append") instance.init_append(file_name, header) return instance
def init_append(self, file_name, header): self._append = True if platform.system().lower() == "windows": self._file_name = file_name.replace("\\", "/") else: self._file_name = file_name self._header = header self._writer.open_for_append(self._file_name)
[文档] def add_schema(self, content, desc=None): """ The schema is added to describe the raw data to be written. Note: Please refer to the Examples of :class:`mindspore.mindrecord.FileWriter` . .. list-table:: The data types supported by MindRecord. :widths: 25 25 50 :header-rows: 1 * - Data Type - Data Shape - Details * - int32 - / - integer number * - int64 - / - integer number * - float32 - / - real number * - float64 - / - real number * - string - / - string data * - bytes - / - binary data * - int32 - [-1] / [-1, 32, 32] / [3, 224, 224] - numpy ndarray * - int64 - [-1] / [-1, 32, 32] / [3, 224, 224] - numpy ndarray * - float32 - [-1] / [-1, 32, 32] / [3, 224, 224] - numpy ndarray * - float64 - [-1] / [-1, 32, 32] / [3, 224, 224] - numpy ndarray Args: content (dict): Dictionary of schema content. desc (str, optional): String of schema description, Default: ``None`` . Returns: int, schema id. Raises: MRMInvalidSchemaError: If schema is invalid. MRMBuildSchemaError: If failed to build schema. MRMAddSchemaError: If failed to add schema. Examples: >>> # Examples of available schemas >>> schema1 = {"file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}} >>> schema2 = {"input_ids": {"type": "int32", "shape": [-1]}, ... "input_masks": {"type": "int32", "shape": [-1]}} """ ret, error_msg = self._validate_schema(content) if ret is False: raise MRMInvalidSchemaError(error_msg) schema = self._header.build_schema(content, desc) return self._header.add_schema(schema)
[文档] def add_index(self, index_fields): """ Select index fields from schema to accelerate reading. schema is added through `add_schema` . Note: The index fields should be primitive type. e.g. int/float/str. If the function is not called, the fields of the primitive type in schema are set as indexes by default. Please refer to the Examples of :class:`mindspore.mindrecord.FileWriter` . Args: index_fields (list[str]): fields from schema. Returns: MSRStatus, SUCCESS or FAILED. Raises: ParamTypeError: If index field is invalid. MRMDefineIndexError: If index field is not primitive type. MRMAddIndexError: If failed to add index field. MRMGetMetaError: If the schema is not set or failed to get meta. """ if not index_fields or not isinstance(index_fields, list): raise ParamTypeError('index_fields', 'list') for field in index_fields: if field in self._header.blob_fields: raise MRMDefineIndexError("Failed to set field {} since it's not primitive type.".format(field)) if not isinstance(field, str): raise ParamTypeError('index field', 'str') return self._header.add_index_fields(index_fields)
def open_and_set_header(self): logger.warning("This interface will be deleted or invisible in the future.") if not self._writer.is_open: ret = self._writer.open(self._paths, self._overwrite) if not self._writer.get_shard_header(): return self._writer.set_shard_header(self._header) return ret
[文档] def write_raw_data(self, raw_data, parallel_writer=False): """ Convert raw data into a series of consecutive MindRecord \ files after the raw data is verified against the schema. Note: Please refer to the Examples of :class:`mindspore.mindrecord.FileWriter` . Args: raw_data (list[dict]): List of raw data. parallel_writer (bool, optional): Write raw data in parallel if it equals to True. Default: ``False`` . Returns: MSRStatus, SUCCESS or FAILED. Raises: ParamTypeError: If index field is invalid. MRMOpenError: If failed to open MindRecord file. MRMValidateDataError: If data does not match blob fields. MRMSetHeaderError: If failed to set header. MRMWriteDatasetError: If failed to write dataset. TypeError: If parallel_writer is not bool. """ if not isinstance(parallel_writer, bool): raise TypeError("The parameter `parallel_writer` must be bool.") if self._parallel_writer is None: self._parallel_writer = parallel_writer if self._parallel_writer != parallel_writer: raise RuntimeError("The parameter `parallel_writer` must be consistent during use.") if not self._parallel_writer: if not self._writer.is_open: self._writer.open(self._paths, self._overwrite) if not self._writer.get_shard_header(): self._writer.set_shard_header(self._header) if not isinstance(raw_data, list): raise ParamTypeError('raw_data', 'list') if self._flush and not self._append: raise RuntimeError("Not allowed to call `write_raw_data` on flushed MindRecord files." \ "When creating new MindRecord files, please remove `commit` before " \ "`write_raw_data`. In other cases, when appending to existing MindRecord files, " \ "please call `open_for_append` first and then `write_raw_data`.") for each_raw in raw_data: if not isinstance(each_raw, dict): raise ParamTypeError('raw_data item', 'dict') self._verify_based_on_schema(raw_data) return self._writer.write_raw_data(raw_data, True, parallel_writer) ## parallel write mode # init the _writers and launch the workers if self._writers is None: self._writers = [None] * len(self._paths) # writers used by worker self._queue = mp.Queue(len(self._paths) * 2) # queue for worker self._workers = [None] * len(self._paths) # worker process for i, path in enumerate(self._paths): self._writers[i] = ShardWriter() self._writers[i].open([path], self._overwrite) self._writers[i].set_shard_header(self._header) # launch the workers for parallel write self._queue._joincancelled = True # pylint: disable=W0212 p = mp.Process(target=self._write_worker, args=(i, self._queue)) p.daemon = True p.start() logger.info("Start worker process(pid:{}) to parallel write.".format(p.pid)) self._workers[i] = p # fill the self._queue check_interval = 0.5 # 0.5s start_time = time.time() while True: try: self._queue.put(raw_data, block=False) except queue.Full: if time.time() - start_time > check_interval: start_time = time.time() logger.warning("Because there are too few MindRecord file shards, the efficiency of parallel " \ "writing is too low. You can stop the current task and add the parameter " \ "`shard_num` of `FileWriter` to upgrade the task.") # check the status of worker process for i in range(len(self._paths)): if not self._workers[i].is_alive(): raise RuntimeError("Worker process(pid:{}) has stopped abnormally. Please check " \ "the above log".format(self._workers[i].pid)) continue return SUCCESS
[文档] def set_header_size(self, header_size): """ Set the size of header which contains shard information, schema information, \ page meta information, etc. The larger a header, the more data \ the MindRecord file can store. If the size of header is larger than \ the default size (16MB), users need to call the API to set a proper size. Args: header_size (int): Size of header, between 16*1024(16KB) and 128*1024*1024(128MB). Returns: MSRStatus, SUCCESS or FAILED. Raises: MRMInvalidHeaderSizeError: If failed to set header size. Examples: >>> from mindspore.mindrecord import FileWriter >>> writer = FileWriter(file_name="test.mindrecord", shard_num=1) >>> status = writer.set_header_size(1 << 25) # 32MB """ return self._writer.set_header_size(header_size)
[文档] def set_page_size(self, page_size): """ Set the size of page that represents the area where data is stored, \ and the areas are divided into two types: raw page and blob page. \ The larger a page, the more data the page can store. If the size of \ a sample is larger than the default size (32MB), users need to call the API \ to set a proper size. Args: page_size (int): Size of page, between 32*1024(32KB) and 256*1024*1024(256MB). Returns: MSRStatus, SUCCESS or FAILED. Raises: MRMInvalidPageSizeError: If failed to set page size. Examples: >>> from mindspore.mindrecord import FileWriter >>> writer = FileWriter(file_name="test.mindrecord", shard_num=1) >>> status = writer.set_page_size(1 << 26) # 64MB """ return self._writer.set_page_size(page_size)
[文档] def commit(self): # pylint: disable=W0212 """ Flush data in memory to disk and generate the corresponding database files. Note: Please refer to the Examples of :class:`mindspore.mindrecord.FileWriter` . Returns: MSRStatus, SUCCESS or FAILED. Raises: MRMOpenError: If failed to open MindRecord file. MRMSetHeaderError: If failed to set header. MRMIndexGeneratorError: If failed to create index generator. MRMGenerateIndexError: If failed to write to database. MRMCommitError: If failed to flush data to disk. RuntimeError: Parallel write failed. """ if not self._parallel_writer: self._flush = True if not self._writer.is_open: self._writer.open(self._paths, self._overwrite) # permit commit without data if not self._writer.get_shard_header(): self._writer.set_shard_header(self._header) self._writer.commit() if self._index_generator: if self._append: self._generator = ShardIndexGenerator(self._file_name, self._append) elif len(self._paths) >= 1: self._generator = ShardIndexGenerator(os.path.realpath(self._paths[0]), self._append) self._generator.build() self._generator.write_to_db() else: # maybe a empty mindrecord, so need check _writers if self._writers is None: self._writers = [None] * len(self._paths) for i, path in enumerate(self._paths): self._writers[i] = ShardWriter() self._writers[i].open(path, self._overwrite) self._writers[i].set_shard_header(self._header) self._parallel_commit() # change the file mode to 600 mindrecord_files = [] index_files = [] for item in self._paths: if os.path.exists(item): os.chmod(item, stat.S_IRUSR | stat.S_IWUSR) mindrecord_files.append(item) index_file = item + ".db" if os.path.exists(index_file): os.chmod(index_file, stat.S_IRUSR | stat.S_IWUSR) index_files.append(index_file) logger.info("The list of mindrecord files created are: {}, and the list of index files are: {}".format( mindrecord_files, index_files)) return SUCCESS
def _index_worker(self, i): """The worker do the index generator""" generator = ShardIndexGenerator(os.path.realpath(self._paths[i]), False) generator.build() generator.write_to_db() def _parallel_commit(self): """Parallel commit""" # if some workers stopped, error may occur alive_count = 0 for i in range(len(self._paths)): if self._workers[i].is_alive(): alive_count += 1 if alive_count != len(self._paths): raise RuntimeError("Parallel write worker error, please check the log file.") # send EOF to worker process for _ in range(len(self._paths)): while True: try: self._queue.put("EOF", block=False) except queue.Full: time.sleep(1) continue break # wait the worker processing while True: alive_count = 0 for i in range(len(self._paths)): if self._workers[i].is_alive(): alive_count += 1 if alive_count == 0: break time.sleep(1) logger.info("Waiting for all the parallel workers to finish.") del self._queue # wait for worker process stop for index in range(len(self._paths)): while True: logger.info("Waiting for the worker process(pid:{}) to process all the data.".format( self._workers[index].pid)) if self._workers[index].is_alive(): time.sleep(1) continue elif self._workers[index].exitcode != 0: raise RuntimeError("Worker process(pid:{}) has stopped abnormally. Please check " \ "the above log".format(self._workers[index].pid)) break if self._index_generator: # use parallel index workers to generator index self._index_workers = [None] * len(self._paths) for index in range(len(self._paths)): p = mp.Process(target=self._index_worker, args=(index,)) p.daemon = True p.start() logger.info("Start worker process(pid:{}) to generate index.".format(p.pid)) self._index_workers[index] = p # wait the index workers stop for index in range(len(self._paths)): self._index_workers[index].join() def _validate_array(self, k, v): """ Validate array item in schema Args: k (str): Key in dict. v (dict): Sub dict in schema Returns: bool, whether the array item is valid. str, error message. """ if v['type'] not in VALID_ARRAY_ATTRIBUTES: error = "Field '{}' contain illegal " \ "attribute '{}'.".format(k, v['type']) return False, error if 'shape' in v: if isinstance(v['shape'], list) is False: error = "Field '{}' contain illegal " \ "attribute '{}'.".format(k, v['shape']) return False, error else: error = "Field '{}' contains illegal attributes.".format(v) return False, error return True, '' def _verify_based_on_schema(self, raw_data): """ Verify data according to schema and remove invalid data if validation failed. 1) allowed data type contains: "int32", "int64", "float32", "float64", "string", "bytes". Args: raw_data (list[dict]): List of raw data. """ error_data_dic = {} schema_content = self._header.schema for field in schema_content: for i, v in enumerate(raw_data): if i in error_data_dic: continue if field not in v: error_data_dic[i] = "for schema, {} th data is wrong, " \ "there is not '{}' object in the raw data.".format(i, field) continue field_type = type(v[field]).__name__ if field_type not in VALUE_TYPE_MAP: error_data_dic[i] = "for schema, {} th data is wrong, " \ "data type for '{}' is not matched.".format(i, field) continue if schema_content[field]["type"] not in VALUE_TYPE_MAP[field_type]: error_data_dic[i] = "for schema, {} th data is wrong, " \ "data type for '{}' is not matched.".format(i, field) continue if field_type == 'ndarray': if 'shape' not in schema_content[field]: error_data_dic[i] = "for schema, {} th data is wrong, " \ "data type for '{}' is not matched.".format(i, field) else: try: np.reshape(v[field], schema_content[field]['shape']) except ValueError: error_data_dic[i] = "for schema, {} th data is wrong, " \ "data type for '{}' is not matched.".format(i, field) error_data_dic = sorted(error_data_dic.items(), reverse=True) for i, v in error_data_dic: raw_data.pop(i) logger.warning(v) def _validate_schema(self, content): """ Validate schema and return validation result and error message. Args: content (dict): Dict of raw schema. Returns: bool, whether the schema is valid. str, error message. """ error = '' if not content: error = 'Schema content is empty.' return False, error if isinstance(content, dict) is False: error = 'Schema content should be dict.' return False, error for k, v in content.items(): if not re.match(r'^[0-9a-zA-Z\_]+$', k): error = "Field '{}' should be composed of " \ "'0-9' or 'a-z' or 'A-Z' or '_'.".format(k) return False, error if v and isinstance(v, dict): if len(v) == 1 and 'type' in v: if v['type'] not in VALID_ATTRIBUTES: error = "Field '{}' contain illegal " \ "attribute '{}'.".format(k, v['type']) return False, error elif len(v) == 2 and 'type' in v: res_1, res_2 = self._validate_array(k, v) if not res_1: return res_1, res_2 else: error = "Field '{}' contains illegal attributes.".format(v) return False, error else: error = "Field '{}' should be dict.".format(k) return False, error return True, error def _write_worker(self, i, in_queue): """The worker do the data check and write to disk for parallel mode""" while True: # try to get new raw_data from master try: raw_data = in_queue.get(block=False) except queue.Empty: continue # get EOF from master, worker should commit and stop if raw_data == "EOF": ret = self._writers[i].commit() if ret != SUCCESS: raise RuntimeError("Commit the {}th shard of MindRecord file failed.".format(i)) break # check the raw_data if not isinstance(raw_data, list): raise ParamTypeError('raw_data', 'list') for each_raw in raw_data: if not isinstance(each_raw, dict): raise ParamTypeError('raw_data item', 'dict') self._verify_based_on_schema(raw_data) self._writers[i].write_raw_data(raw_data, True, False)