mindspore.common.mutable 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""mutable function for setting constants mutable."""
from __future__ import absolute_import

from mindspore.common.tensor import Tensor
from mindspore._c_expression import Tensor as Tensor_


class _Int(int):
    pass


class _Float(float):
    pass


class _Tuple(tuple):
    pass


class _List(list):
    pass


class _Dict(dict):
    pass


def _check_element_type(value):
    """Check if all the elements are Tensor."""
    if isinstance(value, (tuple, list)):
        for element in value:
            if not _check_element_type(element):
                return False
        return True
    if isinstance(value, dict):
        for element in value.values():
            if not _check_element_type(element):
                return False
        return True
    return isinstance(value, (Tensor, Tensor_, int, float)) and not isinstance(value, bool)


[文档]def mutable(input_data, dynamic_len=False): """ Make a constant value mutable. Currently, all the inputs of Cell except Tensor such as scalar, tuple, list and dict, are regarded as constant values. The constant values are non-differentiable and used to do constant folding in the optimization process. Besides, currently when the network input is tuple[Tensor], list[Tensor] or dict[Tensor], even without changing the shape and dtype of the Tensors, the network will be re-compiled when calling this network repeatedly because the these inputs are regarded as constant values. To solve the above problems, we provide api `mutable` to make the constant inputs of Cell 'mutable'. A 'mutable' input means that it is changed to be a variable input just like Tensor and the most important thing is that it will be differentiable. When the `input_data` is tuple or list and `dynamic_len` is False, `mutable` will return a constant length tuple or list with all mutable elements. If `dynamic_len` is True, the length of the return tuple or list will be dynamic. If a dynamic length tuple or list is used as the input of the network and the network is repeatedly called, and the length of the tuple or list is different for each run, it does not need to be re-compiled. Args: input_data (Union[Tensor, tuple, list, dict]): The input data to be made mutable. If 'input_data' is list/tuple/dict, the type of each element should also in the valid types. dynamic_len (bool): Whether to set the whole sequence to be dynamic length. In graph compilation, if `dynamic_len` is ``True`` , the `input_data` must be list or tuple and the elements of `input_data` must have the same type and shape. Default: ``False`` . .. warning:: This is an experimental API that is subject to change or deletion. `dynamic_len` is an experimental argument. Currently, `dynamic_len` is not supported to be ``True`` . Note: Currently this api only works in GRAPH mode. Returns: The origin input data which has been set mutable. Raises: TypeError: If `input_data` is not one of Tensor, tuple, list, dict or their nested structure. TypeError: If `dynamic_len` is ``True`` and `input_data` is not tuple or list. ValueError: If `dynamic_len` is ``True`` , `input_data` is tuple or list but the elements within `input_data` do not have the same shape and type. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import mutable, nn, ops, Tensor, context >>> from mindspore import dtype as mstype >>> context.set_context(mode=context.GRAPH_MODE) >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.matmul = ops.MatMul() ... ... def construct(self, z): ... x = z[0] ... y = z[1] ... out = self.matmul(x, y) ... return out ... >>> class GradNetWrtX(nn.Cell): ... def __init__(self, net): ... super(GradNetWrtX, self).__init__() ... self.net = net ... self.grad_op = ops.GradOperation() ... ... def construct(self, z): ... gradient_function = self.grad_op(self.net) ... return gradient_function(z) ... >>> z = mutable((Tensor([[0.5, 0.6, 0.4], [1.2, 1.3, 1.1]], dtype=mstype.float32), ... Tensor([[0.01, 0.3, 1.1], [0.1, 0.2, 1.3], [2.1, 1.2, 3.3]], dtype=mstype.float32))) >>> output = GradNetWrtX(Net())(z) >>> print(output) (Tensor(shape=[2, 3], dtype=Float32, value= [[ 1.41000009e+00, 1.60000002e+00, 6.59999943e+00], [ 1.41000009e+00, 1.60000002e+00, 6.59999943e+00]]), Tensor(shape=[3, 3], dtype=Float32, value= [[ 1.70000005e+00, 1.70000005e+00, 1.70000005e+00], [ 1.89999998e+00, 1.89999998e+00, 1.89999998e+00], [ 1.50000000e+00, 1.50000000e+00, 1.50000000e+00]])) """ if not _check_element_type(input_data): raise TypeError( f"For 'mutable', the 'input_data' should be one of (int, float, bool, Tensor, tuple, list, dict) " f"or their nested structures, but got {input_data}.") if dynamic_len and not isinstance(input_data, (tuple, list)): raise TypeError( f"For mutable, when the variable_len is True, the first input should be list or tuple," f" but got {input_data}") ret = input_data if isinstance(input_data, int): ret = _Int(input_data) elif isinstance(input_data, float): ret = _Float(input_data) elif isinstance(input_data, list): ret = _List(input_data) elif isinstance(input_data, tuple): ret = _Tuple(input_data) elif isinstance(input_data, dict): ret = _Dict(input_data) elif isinstance(input_data, Tensor): ret.set_const_arg(False) elif isinstance(input_data, Tensor_): ret = Tensor(input_data, internal=True) ret.set_const_arg(False) setattr(ret, "__ms_mutable__", True) setattr(ret, "__ms_dynamic_len__", dynamic_len) return ret