mindspore.dataset.YelpReviewDataset =================================== .. py:class:: mindspore.dataset.YelpReviewDataset(dataset_dir, usage=None, num_samples=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, num_parallel_workers=None, cache=None) 读取和解析Yelp Review Full和Yelp Review Polarity数据集的源数据集。 生成的数据集有两列 `[label, text]` ,两列的数据类型均为string。 参数: - **dataset_dir** (str) - 包含数据集文件的根目录路径。 - **usage** (str, 可选) - 指定数据集的子集,可取值为 'train', 'test'或 'all'。默认值:None,读取全部样本。 对于Polarity数据集, 'train'将读取560,000个训练样本, 'test'将读取38,000个测试样本, 'all'将读取所有598,000个样本。 对于Full数据集, 'train'将读取650,000个训练样本, 'test'将读取50,000个测试样本, 'all'将读取所有700,000个样本。默认值:None,读取所有样本。 - **num_samples** (int, 可选) - 指定从数据集中读取的样本数。默认值:None,读取全部样本。 - **shuffle** (Union[bool, Shuffle], 可选) - 每个epoch中数据混洗的模式,支持传入bool类型与枚举类型进行指定。默认值:`Shuffle.GLOBAL` 。 如果 `shuffle` 为False,则不混洗,如果 `shuffle` 为True,等同于将 `shuffle` 设置为mindspore.dataset.Shuffle.GLOBAL。 通过传入枚举变量设置数据混洗的模式: - **Shuffle.GLOBAL**:混洗文件和样本。 - **Shuffle.FILES**:仅混洗文件。 - **num_shards** (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值:None。指定此参数后, `num_samples` 表示每个分片的最大样本数。 - **shard_id** (int, 可选) - 指定分布式训练时使用的分片ID号。默认值:None。只有当指定了 `num_shards` 时才能指定此参数。 - **num_parallel_workers** (int, 可选) - 指定读取数据的工作线程数。默认值:None,使用mindspore.dataset.config中配置的线程数。 - **cache** (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 `单节点数据缓存 `_ 。默认值:None,不使用缓存。 异常: - **RuntimeError** - `dataset_dir` 参数所指向的文件目录不存在或缺少数据集文件。 - **RuntimeError** - 指定了 `num_shards` 参数,但是未指定 `shard_id` 参数。 - **RuntimeError** - 指定了 `shard_id` 参数,但是未指定 `num_shards` 参数。 - **ValueError** - `num_parallel_workers` 参数超过系统最大线程数。 **关于YelpReview数据集:** Yelp Review Full数据集包括来自Yelp的评论数据。这些数据时从2015年的Yelp数据集挑战赛数据中提取的,主要用于文本分类。 Yelp Review Polarity数据集在Full数据集的基础上,对产品评分进行了分级,评论分数1和2视为负面评论,4和5视为正面评论。 Yelp Reviews Polarity和Yelp Reviews Full datasets具有相同的目录结构。 可以将数据集文件解压缩到以下结构,并通过MindSpore的API读取: .. code-block:: . └── yelp_review_dir ├── train.csv ├── test.csv └── readme.txt **引用:** .. code-block:: @article{zhangCharacterlevelConvolutionalNetworks2015, archivePrefix = {arXiv}, eprinttype = {arxiv}, eprint = {1509.01626}, primaryClass = {cs}, title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}}, abstract = {This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.}, journal = {arXiv:1509.01626 [cs]}, author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann}, month = sep, year = {2015}, } .. code-block:: @article{zhangCharacterlevelConvolutionalNetworks2015, archivePrefix = {arXiv}, eprinttype = {arxiv}, eprint = {1509.01626}, primaryClass = {cs}, title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}}, abstract = {This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.}, journal = {arXiv:1509.01626 [cs]}, author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann}, month = sep, year = {2015}, } .. include:: mindspore.dataset.api_list_nlp.txt