比较与torch.nn.Upsample的功能差异
torch.nn.Upsample
torch.nn.Upsample(
size=None,
scale_factor=None,
mode='nearest',
align_corners=None
)(input)
更多内容详见torch.nn.Upsample。
mindspore.nn.ResizeBilinear
class mindspore.nn.ResizeBilinear(half_pixel_centers=False)(
x,
size=None,
scale_factor=None,
align_corners=False)
更多内容详见mindspore.nn.ResizeBilinear。
使用方式
PyTorch:对数据进行上采样,有多种模式可以选择。
MindSpore:仅当前仅支持bilinear
模式对数据进行采样,如果想要实现其他模式的采样,请参考mindspore.ops.interpolate。
half_pixel_centers默认值为False,设为True后和PyTorch实现功能一致。
代码示例
import mindspore as ms
import mindspore.nn as nn
import torch
import numpy as np
# In MindSpore, it is predetermined to use bilinear to resize the input image.
x = np.random.randn(1, 2, 3, 4).astype(np.float32)
resize = nn.ResizeBilinear(half_pixel_centers=True)
tensor = ms.Tensor(x)
output = resize(tensor, (5, 5))
print(output.shape)
# Out:
# (1, 2, 5, 5)
# In torch, parameter mode should be passed to determine which method to apply for resizing input image.
x = np.random.randn(1, 2, 3, 4).astype(np.float32)
resize = torch.nn.Upsample(size=(5, 5), mode='bilinear')
tensor = torch.tensor(x)
output = resize(tensor)
print(output.detach().numpy().shape)
# Out:
# (1, 2, 5, 5)