mindspore.ops.conv2d
- mindspore.ops.conv2d(inputs, weight, pad_mode='valid', padding=0, stride=1, dilation=1, group=1)[源代码]
二维卷积层。
对输入Tensor计算二维卷积,该Tensor的常见shape为 \((N, C_{in}, H_{in}, W_{in})\) ,其中 \(N\) 为batch size,\(C_{in}\) 为通道数, \(H_{in}, W_{in}\) 分别为特征层的高度和宽度。 \(X_i\) 为 \(i^{th}\) 输入值, \(b_i\) 为 \(i^{th}\) 输入值的偏置项。对于每个batch中的Tensor,其shape为 \((C_{in}, H_{in}, W_{in})\) ,公式定义如下:
\[out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j,\]其中, \(ccor\) 为 cross-correlation , \(C_{in}\) 为输入通道数, \(j\) 的范围从 \(0\) 到 \(C_{out} - 1\) , \(W_{ij}\) 对应第 \(j\) 个过滤器的第 \(i\) 个通道, \(out_{j}\) 对应输出的第 \(j\) 个通道。 \(W_{ij}\) 为卷积核的切片,其shape为 \((\text{kernel_size[0]},\text{kernel_size[1]})\) ,其中 \(\text{kernel_size[0]}\) 和 \(\text{kernel_size[1]}\) 是卷积核的高度和宽度。完整卷积核的shape为 \((C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})\) ,其中 group 是在通道上分割输入 x 的组数。
如果 pad_mode 设置为”valid”,则输出高度和宽度将分别为 \(\left \lfloor{1 + \frac{H_{in} + \text{padding[0]} + \text{padding[1]} - \text{kernel_size[0]} - (\text{kernel_size[0]} - 1) \times (\text{dilation[0]} - 1) }{\text{stride[0]}}} \right \rfloor\) 和 \(\left \lfloor{1 + \frac{W_{in} + \text{padding[2]} + \text{padding[3]} - \text{kernel_size[1]} - (\text{kernel_size[1]} - 1) \times (\text{dilation[1]} - 1) }{\text{stride[1]}}} \right \rfloor\) 。 其中, \(dialtion\) 为卷积核元素之间的间距, \(stride\) 为移动步长, \(padding\) 为添加到输入两侧的零填充。
请参考论文 Gradient Based Learning Applied to Document Recognition 。更详细的介绍,参见:http://cs231n.github.io/convolutional-networks/。
Note
在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 group>1 的场景下,必须要满足 in_channels = out_channels = group 的约束条件。
- 参数:
inputs (Tensor) - shape为 \((N, C_{in}, H_{in}, W_{in})\) 的Tensor。
weight (Tensor) - 设置卷积核的大小为 \((\text{kernel_size[0]}, \text{kernel_size[1]})\) ,则shape为 \((C_{out}, C_{in}, \text{kernel_size[0]}, \text{kernel_size[1]})\) 。
pad_mode (str) - 指定填充模式。取值为”same”,”valid”,或”pad”。默认值:”valid”。
same: 输出的高度和宽度分别与输入整除 stride 后的值相同。填充将被均匀地添加到高和宽的两侧,剩余填充量将被添加到维度末端。若设置该模式,padding 的值必须为0。
valid: 在不填充的前提下返回有效计算所得的输出。不满足计算的多余像素会被丢弃。如果设置此模式,则 padding 的值必须为0。
pad: 对输入 x 进行填充。在输入的高度和宽度方向上填充 padding 大小的0。如果设置此模式, padding 必须大于或等于0。
padding (Union(int, tuple[int])) - 输入 x 的高度和宽度方向上填充的数量。数据类型为int或包含4个int组成的tuple。如果 padding 是一个int,那么上、下、左、右的填充都等于 padding 。如果 padding 是一个有4个int组成的tuple,那么上、下、左、右的填充分别等于 padding[0] 、 padding[1] 、 padding[2] 和 padding[3] 。值必须大于等于0,默认值:0。
stride (Union(int, tuple[int])) - 卷积核移动的步长,数据类型为int或两个int组成的tuple。一个int表示在高度和宽度方向的移动步长均为该值。两个int组成的tuple分别表示在高度和宽度方向的移动步长。默认值:1。
dilation (Union(int, tuple[int])) - 卷积核膨胀尺寸。数据类型为int或由2个int组成的tuple。若 \(k > 1\) ,则卷积核间隔 k 个元素进行采样。垂直和水平方向上的 k ,其取值范围分别为[1, H]和[1, W]。默认值:1。
group (int) - 将过滤器拆分为组。默认值:1。
- 返回:
Tensor,卷积后的值。shape为 \((N, C_{out}, H_{out}, W_{out})\) 。
- 异常:
TypeError - stride 、 padding 或 dilation 既不是int也不是tuple。
TypeError - out_channel 或 group 不是int。
ValueError - stride 或 diation 小于1。
ValueError - pad_mode 不是”same”、”valid”或”pad”。
ValueError - padding 是一个长度不等于4的tuple。
ValueError - pad_mode 不等于”pad”,padding 不等于(0, 0, 0, 0)。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> x = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32) >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) >>> output = ops.conv2d(x, weight) >>> print(output.shape) (10, 32, 30, 30)