mindspore.nn.BatchNorm1d
- class mindspore.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.9, affine=True, gamma_init='ones', beta_init='zeros', moving_mean_init='zeros', moving_var_init='ones', use_batch_statistics=None)[源代码]
对输入的二维数据进行批归一化(Batch Normalization Layer)。
在二维输入(mini-batch 一维输入)上应用批归一化,避免内部协变量偏移。归一化在卷积网络中被广泛的应用。请见论文 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 。
使用mini-batch数据和学习参数进行训练,计算公式如下。
Note
BatchNorm的实现在图模式和PyNative模式下是不同的,因此不建议在网络初始化后更改其模式。
- 参数:
num_features (int) - 通道数量,输入Tensor shape
中的 C 。eps (float) -
加在分母上的值,以确保数值稳定。默认值:1e-5。momentum (float) - 动态均值和动态方差所使用的动量。默认值:0.9。
affine (bool) - bool类型。设置为True时,可学习到
和 值。默认值:True。gamma_init (Union[Tensor, str, Initializer, numbers.Number]) -
参数的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’ones’。beta_init (Union[Tensor, str, Initializer, numbers.Number]) -
参数的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’zeros’。moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]) - 动态平均值的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’zeros’。
moving_var_init (Union[Tensor, str, Initializer, numbers.Number]) - 动态方差的初始化方法。str的值引用自函数 mindspore.common.initializer ,包括’zeros’、’ones’等。默认值:’ones’。
use_batch_statistics (bool) - 如果为True,则使用当前批次数据的平均值和方差值。如果为False,则使用指定的平均值和方差值。如果为None,训练时,将使用当前批次数据的均值和方差,并更新动态均值和方差,验证过程将直接使用动态均值和方差。默认值:None。
- 输入:
x (Tensor) - 输入shape为
的Tensor。
- 输出:
Tensor,归一化后的Tensor,shape为
。- 异常:
TypeError - num_features 不是整数。
TypeError - eps 不是浮点数。
ValueError - num_features 小于1。
ValueError - momentum 不在范围[0, 1]内。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import numpy as np >>> import mindspore.nn as nn >>> from mindspore import Tensor >>> net = nn.BatchNorm1d(num_features=4) >>> x = Tensor(np.array([[0.7, 0.5, 0.5, 0.6], ... [0.5, 0.4, 0.6, 0.9]]).astype(np.float32)) >>> output = net(x) >>> print(output) [[ 0.6999965 0.4999975 0.4999975 0.59999704 ] [ 0.4999975 0.399998 0.59999704 0.89999545 ]]