# 比较与torch.nn.Module.children的功能差异 [](https://gitee.com/mindspore/docs/blob/r1.7/docs/mindspore/source_zh_cn/note/api_mapping/pytorch_diff/Cells.md) ## torch.nn.Module.children ```python torch.nn.Module.children() ``` 更多内容详见[torch.nn.Module.children](https://pytorch.org/docs/1.5.0/nn.html#torch.nn.Module.children)。 ## mindspore.nn.Cell.cells ```python mindspore.nn.Cell.cells() ``` 更多内容详见[mindspore.nn.Cell.cells](https://mindspore.cn/docs/zh-CN/r1.7/api_python/nn/mindspore.nn.Cell.html#mindspore.nn.Cell.cells)。 ## 使用方式 PyTorch:获取网络中的外层子模块,返回类型为迭代器。 MindSpore:获取网络中的外层子模块,返回类型为odict_values。 ## 代码示例 ```python # The following implements mindspore.nn.Cell.cells() with MindSpore. import mindspore import numpy as np from mindspore import Tensor, nn class ConvBN(nn.Cell): def __init__(self): super(ConvBN, self).__init__() self.conv = nn.Conv2d(3, 64, 3) self.bn = nn.BatchNorm2d(64) def construct(self, x): x = self.conv(x) x = self.bn(x) return x class MyNet(nn.Cell): def __init__(self): super(MyNet, self).__init__() self.build_block = nn.SequentialCell(ConvBN(), nn.ReLU()) def construct(self, x): return self.build_block(x) net = MyNet() print(net.cells()) ``` ```text # Out: odict_values([SequentialCell< (0): ConvBN< (conv): Conv2d<input_channels=3, output_channels=64, kernel_size=(3, 3),stride=(1, 1), pad_mode=same, padding=0, dilation=(1, 1), group=1, has_bias=Falseweight_init=normal, bias_init=zeros, format=NCHW> (bn): BatchNorm2d<num_features=64, eps=1e-05, momentum=0.09999999999999998, gamma=Parameter (name=build_block.0.bn.gamma, shape=(64,), dtype=Float32, requires_grad=True), beta=Parameter (name=build_block.0.bn.beta, shape=(64,), dtype=Float32, requires_grad=True), moving_mean=Parameter (name=build_block.0.bn.moving_mean, shape=(64,), dtype=Float32, requires_grad=False), moving_variance=Parameter (name=build_block.0.bn.moving_variance, shape=(64,), dtype=Float32, requires_grad=False)> > (1): ReLU<> >]) ``` ```python # The following implements torch.nn.Module.children() with torch. import torch.nn as nn class ConvBN(nn.Module): def __init__(self): super(ConvBN, self).__init__() self.conv = nn.Conv2d(3, 64, 3) self.bn = nn.BatchNorm2d(64) def forward(self, x): x = self.conv(x) x = self.bn(x) return x class MyNet(nn.Module): def __init__(self): super(MyNet, self).__init__() self.build_block = nn.Sequential(ConvBN(), nn.ReLU()) def construct(self, x): return self.build_block(x) net = MyNet() print(net.children()) for child in net.children(): print(child) ``` ```text # Out: <generator object Module.children at 0x7f5e48142bd0> Sequential( (0): ConvBN( (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1)) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): ReLU() ) ```