比较与tf.data.TFRecordDataset的功能差异

查看源文件

tf.data.TFRecordDataset

class tf.data.TFRecordDataset(
    filenames,
    compression_type=None,
    buffer_size=None,
    num_parallel_reads=None
)

更多内容详见tf.data.TFRecordDataset

mindspore.dataset.TFRecordDataset

class mindspore.dataset.TFRecordDataset(
    dataset_files,
    schema=None,
    columns_list=None,
    num_samples=None,
    num_parallel_workers=None,
    shuffle=Shuffle.GLOBAL,
    num_shards=None,
    shard_id=None,
    shard_equal_rows=False,
    cache=None
)

更多内容详见mindspore.dataset.TFRecordDataset

使用方式

TensorFlow:从TFRecord文件列表创建数据集,支持解压操作,能够设置缓存大小。

MindSpore:从TFRecord文件列表创建数据集,支持设置读取样本的数目以及数据的类型和形状。

代码示例

# The following implements TFRecordDataset with MindSpore.
import mindspore.dataset as ds

dataset_files = ['/tmp/example0.tfrecord',
                 '/tmp/example1.tfrecord']
dataset = ds.TFRecordDataset(dataset_files)

# The following implements TFRecordDataset with TensorFlow.
import tensorflow as tf

filenames = ['/tmp/example0.tfrecord',
             '/tmp/example1.tfrecord']
dataset = tf.data.TFRecordDataset(filenames)