mindspore.ops.ScatterSub

class mindspore.ops.ScatterSub(use_locking=False)[源代码]

使用给定更新值通过减法操作和输入索引来更新Tensor值。此操作在更新完成后输出数据 ,这有利于更加方便地使用更新后的值。

对于每个在 indices.shape 中的 i, …, j

\[\text{input_x}[\text{indices}[i, ..., j], :]\mathrel{-}= \text{updates}[i, ..., j, :]\]

输入的 input_xupdates 遵循隐式类型转换规则,以确保数据类型一致。如果它们具有不同的数据类型,则优先级低的数据类型将转换为优先级相对最高的数据类型。当需要转换Parameter的数据类型时,会抛出RuntimeError异常。

参数:
  • use_locking (bool) - 表示是否使用锁来保护。默认值:False。

输入:
  • input_x (Parameter) - ScatterSub的输入,任意维度的Parameter。

  • indices (Tensor) - 指定相减操作的索引,其数据类型必须为mindspore.int32。

  • updates (Tensor) - 指定与 input_x 相减的Tensor,其数据类型与 input_x 的相同,shape为 indices_shape + x_shape[1:]

输出:

Tensor,表示更新后的 input_x ,其shape和数据类型与 input_x 的相同。

异常:
  • TypeError - use_locking 不是bool。

  • TypeError - indices 不是int32。

  • ValueError - updates 的shape不是 indices_shape + x_shape[1:]

  • RuntimeError - 当 input_xupdates 类型不一致,需要进行类型转换时,如果 updates 不支持转成参数 input_x 需要的数据类型,就会报错。

支持平台:

Ascend CPU GPU

样例:

>>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[0, 1]]), mindspore.int32)
>>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]]), mindspore.float32)
>>> scatter_sub = ops.ScatterSub()
>>> output = scatter_sub(input_x, indices, updates)
>>> print(output)
[[-1. -1. -1.]
 [-1. -1. -1.]]
>>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized.
>>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x")
>>> # for indices = [[0, 1], [1, 1]]
>>> # step 1: [0, 1]
>>> # input_x[0] = [0.0, 0.0, 0.0] - [1.0, 1.0, 1.0] = [-1.0, -1.0, -1.0]
>>> # input_x[1] = [0.0, 0.0, 0.0] - [3.0, 3.0, 3.0] = [-3.0, -3.0, -3.0]
>>> # step 2: [1, 1]
>>> # input_x[1] = [-3.0, -3.0, -3.0] - [7.0, 7.0, 7.0] = [-10.0, -10.0, -10.0]
>>> # input_x[1] = [-10.0, -10.0, -10.0] - [9.0, 9.0, 9.0] = [-19.0, -19.0, -19.0]
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
>>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]],
...                            [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32)
>>> scatter_sub = ops.ScatterSub()
>>> output = scatter_sub(input_x, indices, updates)
>>> print(output)
[[ -1.  -1.  -1.]
 [-19. -19. -19.]]
>>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized.
>>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x")
>>> # for indices = [[1, 0], [1, 1]]
>>> # step 1: [1, 0]
>>> # input_x[0] = [0.0, 0.0, 0.0] - [3.0, 3.0, 3.0] = [-3.0, -3.0, -3.0]
>>> # input_x[1] = [0.0, 0.0, 0.0] - [1.0, 1.0, 1.0] = [-1.0, -1.0, -1.0]
>>> # step 2: [1, 1]
>>> # input_x[1] = [-1.0, -1.0, -1.0] - [7.0, 7.0, 7.0] = [-8.0, -8.0, -8.0]
>>> # input_x[1] = [-8.0, -8.0, -8.0] - [9.0, 9.0, 9.0] = [-17.0, -17.0, -17.0]
>>> indices = Tensor(np.array([[1, 0], [1, 1]]), mindspore.int32)
>>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]],
...                            [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32)
>>> scatter_sub = ops.ScatterSub()
>>> output = scatter_sub(input_x, indices, updates)
>>> print(output)
[[ -3.  -3.  -3.]
 [-17. -17. -17.]]
>>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized.
>>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x")
>>> # for indices = [[0, 1], [0, 1]]
>>> # step 1: [0, 1]
>>> # input_x[0] = [0.0, 0.0, 0.0] - [1.0, 1.0, 1.0] = [-1.0, -1.0, -1.0]
>>> # input_x[1] = [0.0, 0.0, 0.0] - [3.0, 3.0, 3.0] = [-3.0, -3.0, -3.0]
>>> # step 2: [0, 1]
>>> # input_x[0] = [-1.0, -1.0, -1.0] - [7.0, 7.0, 7.0] = [-8.0, -8.0, -8.0]
>>> # input_x[1] = [-3.0, -3.0, -3.0] - [9.0, 9.0, 9.0] = [-12.0, -12.0, -12.0]
>>> indices = Tensor(np.array([[0, 1], [0, 1]]), mindspore.int32)
>>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]],
...                            [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mindspore.float32)
>>> scatter_sub = ops.ScatterSub()
>>> output = scatter_sub(input_x, indices, updates)
>>> print(output)
[[ -8.  -8.  -8.]
 [-12. -12. -12.]]