mindspore.data_sink

mindspore.data_sink(fn, dataset, steps, sink_size=1, jit=False)[源代码]

对输入的函数封装生成一个新的函数。

该生成的函数会以数据下沉模式执行。

参数:
  • fn (Function) - 将与数据集一起运行的函数。

  • dataset (Dataset) - 训练数据集迭代器。数据集可以由数据集生成器API在 mindspore.dataset 中生成,例如 mindspore.dataset.ImageFolderDataset

  • steps (int) - 总的运行次数。 steps 必须为正整数。

  • sink_size (int) - 控制每次下沉的数据执行次数。 sink_size 必须为正整数。默认值:1。

  • jit (bool) - 控制生成函数的执行模式(Graph模式/PyNative模式)。默认值:False,采用PyNative模式执行。

返回:

函数,该生成的函数会以数据下沉模式执行。

异常:
  • ValueError - 如果 steps 或者 sink_size 不是正整数。

支持平台:

Ascend GPU

样例:

>>> import numpy as np
>>> import mindspore as ms
>>> from mindspore import dataset as ds
>>>
>>> data = {"x": np.ones((1,), dtype=np.int32), "y": np.ones((1,), dtype=np.int32)}
>>> dataset = ds.NumpySlicesDataset(data=data)
>>>
>>> def func_net(x, y):
...     out = x + y
...     return out
>>>
>>> sink_process = ms.train.data_sink(func_net, dataset, steps=2, sink_size=1)
>>> for _ in range(2):
...     out = sink_process()
...     print(out)
2
2