Source code for mindspore.nn.layer.dense

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""basic"""
from __future__ import absolute_import

import math

import mindspore.ops as P
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore.common.initializer import initializer, Uniform
from mindspore.common.parameter import Parameter
from mindspore.ops.primitive import constexpr
from mindspore._checkparam import Validator
from mindspore.nn.cell import Cell

__all__ = ['BiDense']


@constexpr
def check_dense_inputs_same_shape(input1, input2, prim_name=None):
    msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
    if input1[:-1] != input2[:-1]:
        raise ValueError(f"{msg_prefix} dimensions except the last of 'input1' must be same as 'input2', but got "
                         f"{input1} of 'input1' and {input2} of 'input2'")


@constexpr
def _check_is_tensor(param_name, input_data, cls_name):
    """Internal function, used to check whether the input data is Tensor."""
    if input_data is not None and not isinstance(P.typeof(input_data), mstype.tensor_type):
        raise TypeError(f"For '{cls_name}', the '{param_name}' must be '{mstype.tensor_type}', "
                        f"but got '{P.typeof(input_data)}'")


@constexpr
def check_last_dimension(input_dim, input_channels, input_name, input_channels_name, prim_name=None):
    msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
    if input_dim != input_channels:
        raise ValueError(f"{msg_prefix} last dimension of '{input_name}' must be same as '{input_channels_name}',"
                         f" but got {input_dim} of '{input_name}' and {input_channels} of '{input_channels_name}'")


[文档]class BiDense(Cell): r""" The bilinear dense connected layer. Applies dense connected layer for two inputs. This layer implements the operation as: .. math:: y = x_1^T A x_2 + b, where :math:`x_1` is the first input tensor, :math:`x_2` is the second input tensor , :math:`A` is a weight matrix with the same data type as the :math:`x_{*}` created by the layer , and :math:`b` is a bias vector with the same data type as the :math:`x_{*}` created by the layer (only if has_bias is True). Args: in1_channels (int): The number of channels in the input1 space. in2_channels (int): The number of channels in the input2 space. out_channels (int): The number of channels in the output space. weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The values of str refer to the function `initializer`. Default: None. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The values of str refer to the function `initializer`. Default: None. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. Shape: - **input1** - :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1_channels}` and :math:`*` means any number of additional dimensions including none. All but the last dimension of the inputs should be the same. - **input2** - :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2_channels}` and :math:`*` means any number of additional dimensions including none. All but the last dimension of the inputs should be the same. - **output** - :math:`(*, H_{out})` where :math:`H_{out}=\text{out_channels}` and all but the last dimension are the same shape as the inputs. Dtype: - **input1** (Tensor) - The dtype must be float16 or float32 and be same as **input2**. - **input1** (Tensor) - The dtype must be float16 or float32 and be same as **input1**. - **output** (Tensor) - With the same dtype as the inputs. Weights: - **weight** (Parameter) - The learnable weights with shape :math:`(\text{out_channels}, \text{in1_channels}, \text{in2_channels})`. When `weight_init` is `None`, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1_channels}}`. - **bias** (Parameter) - The learnable bias of shape :math:`(\text{out_channels})`. If `has_bias` is `True` and `bias_init` is `None`, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1_channels}}`. Raises: TypeError: If `in1_channels`, `in2_channels` or `out_channels` is not an int. TypeError: If `has_bias` is not a bool. ValueError: If length of shape of `weight_init` is not equal to 3 or shape[0] of `weight_init` is not equal to `out_channels` or shape[1] of `weight_init` is not equal to `in1_channels` or shape[2] of `weight_init` is not equal to `in2_channels`. ValueError: If length of shape of `bias_init` is not equal to 1 or shape[0] of `bias_init` is not equal to `out_channels`. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x1 = Tensor(np.random.randn(128, 20), mindspore.float32) >>> x2 = Tensor(np.random.randn(128, 30), mindspore.float32) >>> net = nn.BiDense(20, 30, 40) >>> output = net(x1, x2) >>> print(output.shape) (128, 40) """ def __init__(self, in1_channels, in2_channels, out_channels, weight_init=None, bias_init=None, has_bias=True): super().__init__() self.in_channels = Validator.check_positive_int(in1_channels, "in1_channels", self.cls_name) self.in_channels = Validator.check_positive_int(in2_channels, "in2_channels", self.cls_name) self.out_channels = Validator.check_positive_int(out_channels, "out_channels", self.cls_name) self.has_bias = Validator.check_bool(has_bias, "has_bias", self.cls_name) self.in1_channels = in1_channels self.in2_channels = in2_channels self.out_channels = out_channels self.has_bias = has_bias bound = 1 / math.sqrt(in1_channels) if weight_init is None: weight_init = Uniform(bound) if isinstance(weight_init, Tensor): if weight_init.ndim != 3 or weight_init.shape[0] != out_channels or \ weight_init.shape[1] != in1_channels or weight_init.shape[2] != in2_channels: raise ValueError(f"For '{self.cls_name}', weight init shape error. The ndim of 'weight_init' must " f"be equal to 3, the first dim must be equal to 'out_channels', the " f"second dim must be equal to 'in1_channels', and the third dim must be " f"equal to 'in2_channels'. But got 'weight_init': {weight_init}, " f"'out_channels': {out_channels}, 'in_channels': {in1_channels}, " f"'in2_channels': {in2_channels}") self.weight = Parameter(initializer(weight_init, (out_channels, in1_channels, in2_channels)), 'weight') if self.has_bias: if bias_init is None: bias_init = Uniform(bound) if isinstance(bias_init, Tensor): if bias_init.ndim != 1 or bias_init.shape[0] != out_channels: raise ValueError(f"For '{self.cls_name}', bias init shape error. The ndim of 'bias_init' should " f"be equal to 1, and the first dim must be equal to 'out_channels'. But got " f"'bias_init': {bias_init}, 'out_channels': {out_channels}.") self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias") self.bias_add = P.BiasAdd() self.matmul = P.MatMul() def construct(self, input1, input2): _check_is_tensor("input1", input1, self.cls_name) _check_is_tensor("input2", input2, self.cls_name) input1_shape = input1.shape input2_shape = input2.shape check_last_dimension(input1_shape[-1], self.in1_channels, "input1", "in1_channels", self.cls_name) check_last_dimension(input2_shape[-1], self.in2_channels, "input2", "in2_channels", self.cls_name) check_dense_inputs_same_shape(input1_shape, input2_shape, self.cls_name) if len(input1_shape) != 2: input1 = input1.reshape((-1, input1_shape[-1])) input2 = input2.reshape((-1, input2_shape[-1])) batch_size = input1.shape[0] output = self.matmul(input1, self.weight.transpose(1, 2, 0).view(self.in1_channels, -1)) output = output.view(batch_size, self.in2_channels, self.out_channels) output = output.transpose(2, 0, 1) * input2 output = output.sum(2).swapaxes(0, 1) if self.has_bias: output = self.bias_add(output, self.bias) if len(input1_shape) != 2: out_shape = input1_shape[:-1] + (-1,) output = output.reshape(out_shape) return output def extend_repr(self): s = 'in1_channels={}, in2_channels={}, output_channels={}'.format( self.in1_channels, self.in2_channels, self.out_channels) if self.has_bias: s += ', has_bias={}'.format(self.has_bias) return s