AI模型安全测试

查看源文件

背景

不同于传统程序的Fuzz安全测试,MindArmour针对深度神经网络,提供AI模型安全测试模块Fuzzer。根据神经网络的特点,引入神经元覆盖率[1]的概念,作为Fuzz的测试指导,引导Fuzz朝神经元覆盖率增加的方向生成样本,让输入能够激活更多的神经元,神经元值的分布范围更广,以充分测试DNN,探索不同类型的模型输出结果、模型错误行为。

Fuzzer设计图

AI模型安全测试设计图如下。

fuzz_architecture

在用户接口层,需要用户提供原始数据集DataSet、被测试模型Model和配置Fuzzer参数Fuzzer configuration。Fuzzer模块对模型和数据进行Fuzz测试后,返回安全评估报告Security Report

Fuzzer架构主要包括三个模块:

  1. Natural Threat/Adversarial Example Generator(数据变异模块):

    随机选择变异方法对种子数据变异生成多个变种。支持多种样本的变异策略, 包括:

    • 图像仿射变换方法如:平移、旋转、缩放、错切。

    • 基于图像像素值变化的方法如:改变对比度、亮度、模糊、加噪。

    • 基于对抗攻击的白盒、黑盒对抗样本生成方法,如FGSM、PGD、MDIIM。

  2. Fuzzer moduler(变异指导模块):

    对变异生成的数据进行fuzz测试,观察神经元覆盖率的变化情况,如果生成的数据使得神经元覆盖率增加,则加入变异的种子队列,用于下一轮的数据变异。目前支持的神经元覆盖率指标包括KMNC、NBC、SNAC[2]。

  3. Evaluation(评估模块):

    评估Fuzzer效果,生成数据的质量,变异方法的强度。支持3个类型5种指标,包括通用评价指标:accuracy,神经元覆盖率指标:kmnc, nbc,snac,对抗攻击评价指标:attack_success_rate。

Fuzzer流程

fuzz_process

具体的Fuzzer流程如下:

  1. 根据策略从种子队列中选择一个种子A。

  2. 随机选择变异策略,对种子A进行变异,生成多个变种数据A1,A2…

  3. 用目标模型对变种A1,A2…进行预测,如果变种使得目标模型预测错误,则改变种进入Failed tests。

  4. 若目标模型对于变种的预测结果是正确的,用神经元覆盖率指标进行分析。

  5. 如果变种使得覆盖率增加,那么将该变种放入种子队列,用于下一轮变异。

通过多轮循环,我们获得一系列变异数据Fuzzed Tests,并进一步分析,从多个角度给出安全报告。可以用于深入分析神经网络模型的缺陷,从而针对这些缺陷,进行模型增强等,改善提升模型的通用性、鲁棒性。

代码实现

  1. fuzzing.py:Fuzzer总体流程。

  2. model_coverage_metrics.py:神经元覆盖率指标,包括KMNC,NBC,SNAC。

  3. image_transform.py:图像变异方法,包括基于像素值的变化方法和仿射变化方法。

  4. adversarial attacks:对抗样本攻击方法,包含多种黑盒、白盒攻击方法。

参考文献

[1] Pei K, Cao Y, Yang J, et al. Deepxplore: Automated whitebox testing of deep learning systems[C]//Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 2017: 1-18.

[2]Ma L, Juefei-Xu F, Zhang F, et al. Deepgauge: Multi-granularity testing criteria for deep learning systems[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 2018: 120-131.