mindspore.rewrite.api.node 源代码

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Rewrite module api: Node."""

from typing import Union, Optional, List, Dict
from types import FunctionType

from mindspore.nn import Cell
from mindspore.ops.primitive import Primitive
from mindspore import _checkparam as Validator
from ..node.node import Node as NodeImpl
from ..symbol_tree import SymbolTree as SymbolTreeImpl
from .node_type import NodeType
from .scoped_value import ScopedValue


[文档]class Node: """ A node (Node) can be understood as a basic data structure unit in the computational graph of a neural network, which represents an operation or computational step in the network. Each node usually corresponds to a statement or expression in the source code, which contains the information needed to perform the operation, such as the type of operation, input data, output result, and connection relationships with other nodes. Nodes can express a ``Cell`` call statement, a ``Primitive`` call statement, an arithmetic operation statement, a return statements, etc. of the forward calculation process. Args: node (NodeImpl): A handler of `NodeImpl`. It is recommended to call the specific methods in Node to create a Node, such as 'create_call_cell', rather than calling the Node's constructor directly. Don't care what `NodeImpl` is, just treat it as a handle. """ def __init__(self, node: NodeImpl): self._node = node def __eq__(self, other: 'Node'): if not isinstance(other, Node): return False return self._node == other._node
[文档] @staticmethod def create_call_cell(cell: Cell, targets: List[Union[ScopedValue, str]], args: List[ScopedValue] = None, kwargs: Dict[str, ScopedValue] = None, name: str = "", is_sub_net: bool = False) -> 'Node': """ Create a node. Only support create from a `Cell` now. A node is corresponding to source code like: ``targets = self.name(*args, **kwargs)`` Args: cell (Cell): Cell-operator of this forward-layer. targets (List[Union[ScopedValue, str]]): Indicate output names. Used as targets of an assign statement in source code. args (List[ScopedValue]): Indicate input names. Used as args of a call expression of an assign statement in source code. Default: ``None`` , which indicates the `cell` has no args inputs. kwargs (Dict[str, ScopedValue]): Used as kwargs of a call expression of an assign statement in source code. Indicate keyword input names. Type of key must be `str` and type of value must be `ScopedValue`. Default: ``None`` , which indicates the `cell` has no kwargs inputs. name (str): Indicate the name of node. Used as field name in source code. Default is None. Rewrite will generate name from `cell` when name is None. Rewrite will check and ensure the uniqueness of `name` while node being inserted. Default: ``""`` . is_sub_net (bool): Indicate that is `cell` a network. If `is_sub_net` is true, Rewrite will try to parse the `cell` to a TreeNode, otherwise the `cell` is parsed to a CallCell node. Default: ``False`` . Returns: An instance of `Node`. Raises: TypeError: If `cell` is not a `Cell`. TypeError: If `targets` is not `list`. TypeError: If the type of `targets` is not in `[ScopedValue, str]`. TypeError: If arg in `args` is not a `ScopedValue`. TypeError: If key of `kwargs` is not a str or value of kwarg in `kwargs` is not a `ScopedValue`. Examples: >>> from mindspore.rewrite import SymbolTree, ScopedValue >>> import mindspore.nn as nn >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> position = stree.after(node) >>> new_node = node.create_call_cell(cell=nn.ReLU(), targets=['x'], ... args=[ScopedValue.create_naming_value('x')], name='new_relu') >>> stree.insert(position, new_node) >>> print(type(new_node)) <class 'mindspore.rewrite.api.node.Node'> """ Validator.check_value_type("cell", cell, [Cell, Primitive], "Node") Validator.check_element_type_of_iterable("targets", targets, [ScopedValue, str], "Node") Validator.check_value_type("name", name, [str], "Node") Validator.check_value_type("is_sub_net", is_sub_net, [bool], "Node") if args is not None: Validator.check_element_type_of_iterable("args", args, [ScopedValue], "Node") if kwargs is not None: Validator.check_element_type_of_dict("kwargs", kwargs, [str], [ScopedValue], "Node") return Node(NodeImpl.create_call_op(cell, None, targets, args, kwargs, name, is_sub_net))
[文档] @staticmethod def create_call_function(function: FunctionType, targets: List[Union[ScopedValue, str]], args: List[ScopedValue] = None, kwargs: Dict[str, ScopedValue] = None) -> 'Node': """ Create a node that corresponds to a function call. Note: The codes inside the function will not be parsed. Args: function (FunctionType): The function to be called. targets (List[Union[ScopedValue, str]]): indicates output names. Used as targets of an assign statement in source code. args (List[ScopedValue]): Indicate input names. Used as args of a call expression of an assign statement in source code. Default: ``None`` , which indicates the `function` has no args inputs. kwargs (Dict[str, ScopedValue]): Used as kwargs of a call expression of an assign statement in source code. Indicate keyword input names. Type of key must be `str` and type of value must be `ScopedValue`. Default: ``None`` , which indicates the `function` has no kwargs inputs. Returns: An instance of `Node`. Raises: TypeError: If `function` is not a `FunctionType`. TypeError: If `targets` is not `list`. TypeError: If the type of `targets` is not in `[ScopedValue, str]`. TypeError: If arg in `args` is not a `ScopedValue`. TypeError: If key of `kwargs` is not a str or value of kwarg in `kwargs` is not a `ScopedValue`. Examples: >>> from mindspore.rewrite import SymbolTree, ScopedValue >>> import mindspore.nn as nn >>> from mindspore import ops >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> position = stree.after(node) >>> new_node = node.create_call_function(function=ops.abs, targets=['x'], ... args=[ScopedValue.create_naming_value('x')]) >>> stree.insert(position, new_node) >>> print(new_node.get_node_type()) NodeType.CallFunction """ Validator.check_value_type("function", function, [FunctionType, type, type(abs)], "create_call_function") Validator.check_element_type_of_iterable("targets", targets, [ScopedValue, str], "create_call_function") if args is not None: Validator.check_element_type_of_iterable("args", args, [ScopedValue], "create_call_function") if kwargs is not None: Validator.check_element_type_of_dict("kwargs", kwargs, [str], [ScopedValue], "create_call_function") return Node(NodeImpl._create_call_function(function, targets, args, kwargs))
@staticmethod def create_input(param_name: str, default: Optional[ScopedValue] = None) -> 'Node': # pylint: disable=missing-function-docstring Validator.check_value_type("param_name", param_name, [str], "Node") if default is not None: Validator.check_value_type("default", default, [ScopedValue], "Node") return Node(NodeImpl.create_input_node(None, param_name, default, name=f"input_{param_name}")) def get_handler(self) -> NodeImpl: return self._node
[文档] def get_inputs(self) -> ['Node']: """ Gets a list of nodes whose output values are used as input values for the current node. Returns: A list of nodes. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv2") >>> inputs = node.get_inputs() >>> print([input.get_name() for input in inputs]) ['max_pool2d'] """ return [Node(node_impl) for node_impl in self._node.get_inputs()]
[文档] def get_users(self) -> ['Node']: """ Get a list of nodes that use the output of the current node as input. Returns: A list of nodes. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> users = node.get_users() >>> print([user.get_name() for user in users]) ['relu'] """ return [Node(node_impl) for node_impl in self._node.get_users()]
[文档] def set_arg(self, index: int, arg: Union[ScopedValue, str]): """ Set argument of current node. Args: index (int): Indicate which input being modified. arg (Union[ScopedValue, str]): New argument to been set. Raises: TypeError: If `index` is not a `int` number. TypeError: If the type of `arg` is not in [`ScopedValue`, `str`]. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("relu_3") >>> node.set_arg(0, "fc1") >>> print(node.get_args()) [fc1] """ Validator.check_value_type("index", index, [int], "Node") Validator.check_value_type("arg", arg, [ScopedValue, str], "Node") belong_symbol_tree: SymbolTreeImpl = self._node.get_belong_symbol_tree() if belong_symbol_tree is None: self._node.set_arg(arg, index) else: belong_symbol_tree.set_node_arg(self._node, index, arg)
[文档] def set_arg_by_node(self, arg_idx: int, src_node: 'Node', out_idx: Optional[int] = None): """ Set argument of current node by another Node. Args: arg_idx (int): Indicate which input being modified. src_node (Node): A `Node` as new input. Can be a node or name of node. out_idx (int, optional): Indicate which output of `src_node` as new input of current node. Default: ``None`` , which means use first output of `src_node` as new input. Raises: TypeError: If `arg_idx` is not a `int` number. ValueError: If `arg_idx` is out of range. TypeError: If `src_node` is not a `Node` instance. TypeError: If `out_idx` is not a `int` number. ValueError: If `out_idx` is out of range. ValueError: If `src_node` has multi-outputs while `out_idx` is None or `out_idx` is not offered. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> src_node = stree.get_node("fc1") >>> dst_node = stree.get_node("relu_3") >>> dst_node.set_arg_by_node(0, src_node, 0) >>> print(dst_node.get_args()) [fc1_var] """ Validator.check_value_type("arg_idx", arg_idx, [int], "Node") Validator.check_value_type("src_node", src_node, [Node], "Node") if out_idx is not None: Validator.check_value_type("out_idx", out_idx, [int], "Node") belong_symbol_tree: SymbolTreeImpl = self._node.get_belong_symbol_tree() if belong_symbol_tree is None: self._node.set_arg_by_node(arg_idx, src_node._node, out_idx) else: belong_symbol_tree.set_node_arg_by_node(self._node, arg_idx, src_node.get_handler(), out_idx)
[文档] def get_targets(self) -> [ScopedValue]: """ Gets a list of output values for the current node. Returns: A list of outputs of type ``ScopedValue`` . """ return self._node.get_targets()
[文档] def get_name(self) -> str: """ Get the name of current node. When node has been inserted into `SymbolTree`, the name of node should be unique in `SymbolTree`. Returns: A string as name of node. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> name = node.get_name() >>> print(name) conv1 """ return self._node.get_name()
[文档] def get_node_type(self) -> NodeType: """ Get the node_type of current node. See :class:`mindspore.rewrite.NodeType` for details on node types. Returns: A NodeType as node_type of node. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> node_type = node.get_node_type() >>> print(node_type) NodeType.CallCell """ return self._node.get_node_type()
[文档] def get_instance_type(self) -> type: """ Gets the instance type called in the code corresponding to the current node. - When `node_type` of current node is `CallCell`, the code for that node calls an instance of type ``Cell`` . - When `node_type` of current node is `CallPrimitive`, the code for that node calls an instance of type ``Primitive`` . - When `node_type` of current node is `Tree`, the code for that node calls an instance of network type. - When `node_type` of current node is `Python`, `Input`, `Output` or `CallMethod`, the instance type is ``NoneType`` . Returns: The type of instance called in the statement corresponding to the current node. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> instance_type = node.get_instance_type() >>> print(instance_type) <class 'mindspore.nn.layer.conv.Conv2d'> """ return self._node.get_instance_type()
def get_instance(self): return self._node.get_instance()
[文档] def get_args(self) -> [ScopedValue]: """ Get arguments of current node. Returns: A list of arguments of type ``ScopedValue`` . Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> print(node.get_args()) [x] """ return self._node.get_args()
[文档] def get_symbol_tree(self) -> 'SymbolTree': """ Get the symbol tree which current node belongs to. Returns: SymbolTree, None if current node does not belong to any SymbolTree. Examples: >>> from mindspore.rewrite import SymbolTree >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("conv1") >>> print(type(node.get_symbol_tree())) <class 'mindspore.rewrite.api.symbol_tree.SymbolTree'> """ from .symbol_tree import SymbolTree stree_impl = self._node.get_belong_symbol_tree() if not stree_impl: return None return SymbolTree(stree_impl)
[文档] def get_sub_tree(self) -> 'SymbolTree': """ Get the sub symbol tree stored in node with type of `NodeType.Tree` . See :class:`mindspore.rewrite.NodeType` for details on node types. Returns: SymbolTree stored in Tree node. Raises: TypeError: If current node is not type of `NodeType.Tree` . AttributeError: If no symbol tree is stored in Tree node. Examples: >>> import mindspore.nn as nn >>> from mindspore.rewrite import SymbolTree >>> >>> class SubNet(nn.Cell): ... def __init__(self): ... super().__init__() ... self.relu = nn.ReLU() ... ... def construct(self, x): ... x = self.relu(x) ... return x ... >>> class Net(nn.Cell): ... def __init__(self): ... super().__init__() ... self.subnet = SubNet() ... ... def construct(self, x): ... x = self.subnet(x) ... return x >>> >>> net = Net() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("subnet") >>> print(type(node.get_sub_tree())) <class 'mindspore.rewrite.api.symbol_tree.SymbolTree'> """ if self.get_node_type() != NodeType.Tree: raise TypeError("For get_sub_tree, the type of node should be 'NodeType.Tree', " f"but got {self.get_node_type()}") subtree: SymbolTreeImpl = self.get_handler().symbol_tree if subtree is None: raise AttributeError( f"For get_sub_tree, no symbol tree is stroed in node {self.get_name()}.") from .symbol_tree import SymbolTree return SymbolTree(subtree)
[文档] def get_kwargs(self) -> {str: ScopedValue}: """ Get keyword arguments of current node. Returns: A dict of keyword arguments, where key is of type str, and value is of type ``ScopedValue`` . Examples: >>> from mindspore.rewrite import SymbolTree >>> from mindspore import nn >>> >>> class ReLUNet(nn.Cell): ... def __init__(self): ... super().__init__() ... self.relu = nn.ReLU() ... ... def construct(self, input): ... output = self.relu(input=input) ... return output >>> >>> net = ReLUNet() >>> stree = SymbolTree.create(net) >>> node = stree.get_node("relu") >>> print(node.get_kwargs()) {'input': input} """ return self._node.get_kwargs()
def set_attribute(self, key: str, value): Validator.check_value_type("key", key, [str], "Node attribute") self._node.set_attribute(key, value) def get_attributes(self) -> {str: object}: return self._node.get_attributes() def get_attribute(self, key: str): Validator.check_value_type("key", key, [str], "Node attribute") return self._node.get_attribute(key) # pylint: disable=missing-docstring def get_arg_providers(self) -> dict: arg_providers = {} for arg_idx, providers in self._node.get_arg_providers().items(): arg_providers[arg_idx] = (Node(providers[0]), providers[1]) return arg_providers # pylint: disable=missing-docstring def get_target_users(self, index=-1) -> Union[dict, list]: Validator.check_value_type("index", index, [int], "get_target_users") if index == -1: target_users = {} for target_idx, users in self._node.get_target_users().items(): target_users[target_idx] = [(Node(user[0]), user[1]) for user in users] return target_users target_users = [] for users in self._node.get_target_users(index): target_users.append((Node(users[0]), users[1])) return target_users