mindspore.parallel.transform_safetensors 源代码

# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Transform distributed safetensors"""
from __future__ import absolute_import

import os
import glob
import math
import json
import re
from collections import defaultdict

import time
import multiprocessing as mp
import numpy as np
from safetensors.numpy import save_file, load_file
from safetensors import safe_open

import mindspore as ms
from mindspore import log as logger
from mindspore.parallel._parallel_serialization import _get_device_num_from_strategy, _make_dir, \
    _extract_layout_map, _extract_src_dst_layout_map, _parameter_not_in_local_stage, _extract_pipeline_stage_num, \
    _insert_opt_shard_reshape, _extract_src_dst_layout_map_by_src
from mindspore.parallel._tensor import _get_tensor_strategy, _construct_from_to_tensor_layout, \
    _get_needed_rank_transform_operator_map_by_layouts, \
    _generate_transform_operator_stack, _apply_tensor_transform_operators, _construct_tensor_layout_for_opt_shard, \
    _extract_layout_item, _load_tensor_shape, _apply_operator
from mindspore.parallel._parallel_serialization import _build_searched_strategy, _load_protobuf_strategy, \
    _convert_to_list


def _progress_bar(iterable, total=None):
    """
    Decorate an iterable object, returning an iterator which acts exactly
    like the original iterable, but prints a dynamically updating
    progressbar every time a value is requested.
    """
    if total is None:
        total = len(iterable)

    start_time = time.time()

    def print_progress_bar(iteration):
        percent = f"{100 * (iteration / float(total)):.1f}"
        bar_length = 40
        filled_length = int(bar_length * iteration // total)
        bar = '█' * filled_length + '-' * (bar_length - filled_length)

        elapsed_time = time.time() - start_time
        estimated_total_time = elapsed_time / iteration * total
        remaining_time = estimated_total_time - elapsed_time

        elapsed_time_str = time.strftime("%H:%M:%S", time.gmtime(elapsed_time))
        remaining_time_str = time.strftime("%H:%M:%S", time.gmtime(remaining_time))

        print(f'\r{percent}%|{bar}|[{elapsed_time_str}<{remaining_time_str}]', end='')
        if iteration == total:
            print()

    for i, item in enumerate(iterable, start=1):
        yield item
        print_progress_bar(i)


def _load_and_transform(path, name_map, load_func, transform_func):
    if load_func is not None:
        param_dict = load_func(path)
    else:
        param_dict = path
    transform_dict = {}
    for k, v in param_dict.items():
        new_name = name_map.get(k, k) if name_map is not None else k
        transform_dict[new_name] = transform_func(v, new_name)
    return transform_dict


def _check_transform_safetensors(src_safetensors_dir, ckpt_prefix, src_strategy_file, dst_strategy_file):
    """check _transform_safetensors input"""
    if not isinstance(ckpt_prefix, str):
        raise TypeError("The ckpt_prefix should be a str.")
    if src_strategy_file and os.path.dirname(src_strategy_file) and not os.path.exists(
            os.path.dirname(src_strategy_file)):
        raise ValueError("The director of src_strategy_file: {} is not exists.".
                         format(os.path.dirname(src_strategy_file)))
    if dst_strategy_file and os.path.dirname(dst_strategy_file) and not os.path.exists(
            os.path.dirname(dst_strategy_file)):
        raise ValueError("The director of dst_strategy_file: {} is not exists.".
                         format(os.path.dirname(dst_strategy_file)))


def _check_output_format(output_format):
    if output_format not in ["safetensors", "ckpt"]:
        raise ValueError(f"For 'transform_safetensors', the output_format must be "
                         f"'safetensors' or 'ckpt', but got {output_format}.")


def _split_protobuf_strategy(merged_strategy_file):
    """split src_strategy_file by pp"""
    dst_parallel_strategy_map = _load_protobuf_strategy(merged_strategy_file)
    if not dst_parallel_strategy_map.parallel_strategy_item or not dst_parallel_strategy_map.parallel_layout_item:
        raise ValueError(f"The merged strategy file {merged_strategy_file} is empty")

    src_dict = {}
    for layout_item in dst_parallel_strategy_map.parallel_layout_item:
        stage, _ = layout_item.param_name.split('-', 1)
        stage = int(stage)
        if stage not in src_dict:
            src_dict[stage] = {}
        parameter_name = layout_item.param_name
        layout = layout_item.parallel_layouts
        src_dict[stage][parameter_name] = layout
    return src_dict


def _transform_safetensors(src_safetensors_dir, dst_safetensors_dir, ckpt_prefix, src_strategy_file=None,
                           dst_strategy_file=None, process_num=1, output_format="safetensors"):
    """Transform distributed safetensors from source sharding strategy to destination sharding strategy for a rank."""
    _check_transform_safetensors(src_safetensors_dir, ckpt_prefix, src_strategy_file, dst_strategy_file)
    _check_output_format(output_format)
    _make_dir(dst_safetensors_dir, "path")
    all_safetensor_files_map = _collect_safetensor_files(src_safetensors_dir)

    dst_strategy_dict = _build_searched_strategy(dst_strategy_file)
    pipeline_stage_num = _extract_pipeline_stage_num(src_strategy_file)
    dst_stage_num = _extract_pipeline_stage_num(dst_strategy_file)

    if pipeline_stage_num > 1 and dst_stage_num == 1:
        stage_dict = _split_protobuf_strategy(src_strategy_file)

        processes = []
        manager = mp.Manager()
        _transform_param_list = manager.list()
        for _, src_strategy_dict in stage_dict.items():
            p = mp.Process(target=_transform_stage_safetensors,
                           args=(src_strategy_dict, dst_strategy_dict, ckpt_prefix,
                                 dst_safetensors_dir, output_format, all_safetensor_files_map, process_num,
                                 _transform_param_list))
            p.start()
            processes.append(p)
        for p in processes:
            p.join()

        _save_final_safetensors(_transform_param_list, output_format)
    else:
        src_strategy_dict = _build_searched_strategy(src_strategy_file)
        _transform_stage_safetensors(src_strategy_dict, dst_strategy_dict, ckpt_prefix,
                                     dst_safetensors_dir, output_format, all_safetensor_files_map, process_num,
                                     _transform_param_list=None)


def _transform_stage_safetensors(src_strategy_dict, dst_strategy_dict, ckpt_prefix,
                                 dst_safetensors_dir, output_format, all_safetensor_files_map, process_num,
                                 _transform_param_list):
    """Transform distributed safetensors by stage"""
    src_stage_device_num = _get_device_num_from_strategy(src_strategy_dict)
    dst_stage_device_num = _get_device_num_from_strategy(dst_strategy_dict)

    origin_src_strategy_list = _extract_layout_map(src_strategy_dict)
    origin_dst_strategy_list = _extract_layout_map(dst_strategy_dict)

    needed_rank_list_map = _find_needed_ranks(src_strategy_dict, dst_strategy_dict)
    for needed_rank_list, rank in needed_rank_list_map.items():
        for needed_rank in needed_rank_list.split("-"):
            if int(needed_rank) not in all_safetensor_files_map:
                raise ValueError("The safetensor file of rank{} is needed for converting rank{}'s safetensor, "
                                 "but it is missing.".format(needed_rank, rank))
    dst_stage_num = _extract_pipeline_stage_num(dst_strategy_dict)
    if not (len(needed_rank_list_map) == 1 and dst_stage_num > 1) and process_num > len(needed_rank_list_map):
        ms.log.warning("The value of process_num cannot be greater than that of needed_rank_list_map.")
        process_num = len(needed_rank_list_map)
    _transform_safetensors_with_parallel(needed_rank_list_map, all_safetensor_files_map, src_stage_device_num,
                                         dst_stage_device_num, src_strategy_dict, dst_strategy_dict,
                                         origin_src_strategy_list, origin_dst_strategy_list, ckpt_prefix,
                                         dst_safetensors_dir, process_num, output_format,
                                         _transform_param_list)


def _distribute_files_by_size(all_safetensor_files_map, needed_rank_list_map, process_num):
    """
    Distributes files across multiple processes based on file size to balance the processing load.
    """
    if process_num == 1:
        return [needed_rank_list_map]
    # Calculate the size of each file.
    # if src==1, dst pp>1, split for pp number.
    if len(needed_rank_list_map) == 1:
        src_rank = next(iter(needed_rank_list_map.keys()))
        dst_list = next(iter(needed_rank_list_map.values()))
        size = len(dst_list) // process_num
        split_list = [dst_list[i:i + size] for i in range(0, len(dst_list), size)]
        part_list_dict = [dict() for _ in range(process_num)]
        for index in range(process_num):
            part_list_dict[index][src_rank] = split_list[index]
        return part_list_dict

    rank_size = dict()
    for rank_id, file_name in all_safetensor_files_map.items():
        tmp_size = os.path.getsize(file_name) / 1024 / 1024
        rank_size[rank_id] = tmp_size
    # Obtain the rank and size required by all parts.
    part_total = []
    for index, (k, v) in enumerate(needed_rank_list_map.items()):
        tmp_part = []
        key_ele = k.split("-")
        tmp_size = 0
        for ele in key_ele:
            tmp_size += rank_size[int(ele)]
        tmp_part.append(index)
        tmp_part.append(tmp_size)
        part_total.append(tmp_part)
    # Sort each part by size.
    part_total = sorted(part_total, key=lambda x: x[1], reverse=True)
    part_list = [[] for _ in range(process_num)]
    part_size = [[] for _ in range(process_num)]
    for [index, size] in part_total:
        min_sum = float('inf')
        min_idx = -1
        for ele in range(process_num):
            if sum(part_size[ele]) < min_sum:
                min_sum = sum(part_size[ele])
                min_idx = ele
        part_list[min_idx].append(index)
        part_size[min_idx].append(size)

    part_list_dict = [dict() for _ in range(process_num)]
    for index, (k, v) in enumerate(needed_rank_list_map.items()):
        for idd, ele in enumerate(part_list):
            if index in ele:
                part_list_dict[idd][k] = v
                break
    return part_list_dict


def _transform_safetensors_with_parallel(needed_rank_list_map, all_safetensor_files_map, src_stage_device_num,
                                         dst_stage_device_num, src_strategy_dict, dst_strategy_dict,
                                         origin_src_strategy_list, origin_dst_strategy_list, ckpt_prefix,
                                         dst_safetensors_dir, process_num, output_format,
                                         _transform_param_list):
    """
    Transforms safetensors files to a specified format using parallel processing.
    """
    # cal param name for every pipeline, save in pipe_param_list.
    pipe_num = _extract_pipeline_stage_num(dst_strategy_dict)
    pipe_param_list = [None for _ in range(max(pipe_num, process_num))]
    if len(needed_rank_list_map) == 1 and pipe_num > 1:
        process_num = pipe_num
        pipe_param_list = [[] for _ in range(pipe_num)]
        layout_map = _convert_to_list(dst_strategy_dict)

        for name, layout in layout_map.items():
            pipe_param_list[layout[6][0]].append(name)
    part_list_dict = _distribute_files_by_size(all_safetensor_files_map, needed_rank_list_map, process_num)
    processes = []
    for i in range(process_num):
        p = mp.Process(target=_transform_safetensors_single, args=(
            part_list_dict[i], all_safetensor_files_map, src_stage_device_num, dst_stage_device_num,
            src_strategy_dict, dst_strategy_dict, origin_src_strategy_list, origin_dst_strategy_list,
            ckpt_prefix, dst_safetensors_dir, output_format, _transform_param_list, pipe_param_list[i]))
        p.start()
        processes.append(p)
    for p in processes:
        p.join()


def _count_redundancy_list(rank_num, param_name, redundancy_dict, device_num):
    """Obtain the specified redundant group."""
    redundancy_tuple = redundancy_dict.get(param_name)
    for rank_list in redundancy_tuple:
        for rank in rank_list:
            if rank_num % device_num == rank % device_num:
                return set(rank_list)
    return set()


def _find_remove_redundancy_rank_id(pipe_param_list, single_param_dict, file_dict, saftensor_dict, redundancy_dict,
                                    needed_rank, device_num):
    """Find the rank_id under redundant groups."""
    for param_name in pipe_param_list:
        rank_num = int(needed_rank)
        redundancy_ranks = _count_redundancy_list(rank_num, param_name, redundancy_dict, device_num)
        open_file_id = None
        if single_param_dict.get(param_name) is None:
            continue
        for real_rank in single_param_dict[param_name]:
            for redundancy_rank in redundancy_ranks:
                if real_rank % device_num == redundancy_rank % device_num:
                    open_file_id = real_rank
                    break
        if open_file_id is not None:
            output = file_dict[open_file_id].get_tensor(param_name)
            saftensor_dict[param_name] = output
        else:
            raise ValueError(f"For _transform_safetensors_single, {param_name} should be in "
                             f"{redundancy_ranks}, but in {single_param_dict[param_name]}.")


def _transform_safetensors_single(needed_rank_list_map, all_safetensor_files_map, src_stage_device_num,
                                  dst_stage_device_num,
                                  src_strategy_dict, dst_strategy_dict, origin_src_strategy_list,
                                  origin_dst_strategy_list,
                                  ckpt_prefix, dst_safetensors_dir, output_format,
                                  _transform_param_list, pipe_param_list=None, file_index=None, unified_flag=False,
                                  src_strategy_file=None):
    """
    Transforms safetensors files to a specified format without using parallel processing.
    """
    if src_strategy_file is not None:
        from mindspore.train._utils import get_parameter_redundancy
        redundancy_dict_tmp = get_parameter_redundancy(src_strategy_file)
        redundancy_dict = {}
        device_num = 0
        for param_name, redundancy in redundancy_dict_tmp.items():
            if device_num == 0:
                device_num = max(max(redundancy)) + 1
            origin_param_name = param_name
            pipeline_stage = 0
            if "-" in param_name:
                pipeline_stage, origin_param_name = param_name.split("-")
                pipeline_stage = int(pipeline_stage)
            redundancy_new = tuple(
                (tuple(x + pipeline_stage * device_num for x in subtuple)) for subtuple in redundancy)
            redundancy_dict[origin_param_name] = redundancy_new
        file_dict = {}
        single_param_dict = {}
        for file_id, _ in all_safetensor_files_map.items():
            f = safe_open(all_safetensor_files_map.get(file_id), framework="np")
            file_dict[file_id] = f
            for param_name in f.keys():
                if param_name not in single_param_dict.keys():
                    single_param_dict[param_name] = {file_id}
                else:
                    single_param_dict[param_name].add(file_id)
    src_strategy_list_keys = _convert_to_list(src_strategy_dict).keys() if src_strategy_dict else []
    dst_strategy_list_keys = _convert_to_list(dst_strategy_dict).keys() if dst_strategy_dict else []
    for needed_rank_list_key, transform_rank_list in needed_rank_list_map.items():
        param_total_dict = defaultdict(dict)
        param_attr_dict = defaultdict(dict)
        needed_rank_list = needed_rank_list_key.split("-")
        for needed_rank in needed_rank_list:
            if pipe_param_list:
                saftensor_dict = dict()
                if src_strategy_file is not None:
                    _find_remove_redundancy_rank_id(pipe_param_list, single_param_dict, file_dict, saftensor_dict,
                                                    redundancy_dict, needed_rank, device_num)
                else:
                    with safe_open(all_safetensor_files_map.get(int(needed_rank)), framework="np") as f:
                        if not unified_flag:
                            all_param_name_set = set(f.keys())
                            src_param_name_set = set(src_strategy_list_keys)
                            dst_param_name_set = set(dst_strategy_list_keys)
                            hyper_param_set = all_param_name_set - (src_param_name_set & dst_param_name_set)
                            pipe_param_list.extend(list(hyper_param_set))
                        for param_name in pipe_param_list:
                            if param_name not in f.keys():
                                # param not in ckpt file, check reason
                                continue
                            output = f.get_tensor(param_name)
                            saftensor_dict[param_name] = output
            else:
                saftensor_dict = load_file(all_safetensor_files_map.get(int(needed_rank)))
            for param_name, param in saftensor_dict.items():
                src_rank = int(needed_rank) % src_stage_device_num
                param_total_dict[param_name][src_rank] = param
                param_attr_dict[param_name][src_rank] = (True, False)

        for transform_rank in transform_rank_list:
            param_total_dict_keys = list(param_total_dict.keys())
            src_strategy_list, dst_strategy_list = _extract_src_dst_layout_map(transform_rank, src_strategy_dict,
                                                                               dst_strategy_dict)
            # cut the parameter not in the pipeline stage.
            for param in list(param_total_dict.keys()):
                if _parameter_not_in_local_stage(param, origin_src_strategy_list, src_strategy_list) \
                        and _parameter_not_in_local_stage(param, origin_dst_strategy_list, dst_strategy_list):
                    param_total_dict_keys.remove(param)

            local_rank_id = transform_rank % dst_stage_device_num
            transform_param_dict = _transform_parallel_safetensor(local_rank_id, param_total_dict,
                                                                  param_attr_dict, src_strategy_list, dst_strategy_list,
                                                                  param_total_dict_keys, src_strategy_file)
            if file_index is not None:
                save_safetensor_file = f"part{file_index}.{output_format}"
                save_safetensor_file_dir = dst_safetensors_dir
            else:
                save_safetensor_file = f"{ckpt_prefix}{transform_rank}.{output_format}"
                save_safetensor_file_dir = os.path.join(dst_safetensors_dir, "rank_{}".format(transform_rank))

            if not os.path.exists(save_safetensor_file_dir):
                _make_dir(save_safetensor_file_dir, "path")
            save_file_name = os.path.join(save_safetensor_file_dir, save_safetensor_file)
            if _transform_param_list is not None:
                _transform_param_list.append({save_file_name: transform_param_dict})
            else:
                if output_format == "safetensors":
                    save_file(transform_param_dict, save_file_name)
                else:
                    transform_param_dict = _load_and_transform(transform_param_dict, None, None,
                                                               transform_func=lambda v, name: ms.Parameter(v,
                                                                                                           name=name))
                    ms.save_checkpoint(transform_param_dict, save_file_name)
            del param_total_dict_keys
        del param_total_dict


def _save_final_safetensors(_transform_param_list, output_format):
    """save file with list"""
    new_transform_dict = {}
    for transform_dict in _transform_param_list:
        for save_file_name, transform_param_dict in transform_dict.items():
            if save_file_name not in new_transform_dict:
                new_transform_dict[save_file_name] = transform_param_dict
            else:
                new_transform_dict[save_file_name].update(transform_param_dict)
    for save_file_name, transform_param_dict in new_transform_dict.items():
        if output_format == "safetensors":
            save_file(transform_param_dict, save_file_name)
        else:
            transform_param_dict = _load_and_transform(transform_param_dict, None, None,
                                                       transform_func=lambda v, name: ms.Parameter(v, name=name))
            ms.save_checkpoint(transform_param_dict, save_file_name)


def transform_safetensors_by_stage(src_safetensors_dir, dst_safetensors_dir, ckpt_prefix,
                                   src_strategy_file,
                                   dst_strategy_file=None):
    """Transform safetensor for stage in src_strategy_file"""
    param_total_dict = defaultdict(dict)
    param_attr_dict = defaultdict(dict)
    param_type_dict = defaultdict(dict)
    src_strategy_list, dst_strategy_list, stage_id = _extract_src_dst_layout_map_by_src(src_strategy_file, \
                                                                                        dst_strategy_file)
    src_stage_device_num = np.prod(src_strategy_list.get(list(src_strategy_list.keys())[0])[0]) if src_strategy_list \
                                                                                                   is not None else 1
    dst_stage_device_num = np.prod(dst_strategy_list.get(list(dst_strategy_list.keys())[0])[0]) if dst_strategy_list \
                                                                                                   is not None else 1
    origin_dst_strategy_list = _extract_layout_map(dst_strategy_file)
    origin_src_strategy_list = _extract_layout_map(src_strategy_file)
    safetensor_files_map = {}
    src_rank_id_start = stage_id * src_stage_device_num
    for local_rank in range(src_stage_device_num):
        rank_id = src_rank_id_start + local_rank
        safetensor_file_name = os.path.join(src_safetensors_dir, "rank_{}".format(rank_id), "*.safetensors")
        rank_ckpts = glob.glob(safetensor_file_name)
        rank_ckpts.sort()
        for safetensor_file in rank_ckpts:
            if not os.path.isfile(safetensor_file):
                continue
            safetensor_files_map[rank_id] = safetensor_file
    for rank, local_file in safetensor_files_map.items():
        if not os.path.exists(local_file):
            raise ValueError("safetensor file {} in rank {} not exits: ".format(local_file, rank))
    for rank, file_name in safetensor_files_map.items():
        saftensor_dict = load_file(file_name)
        for param_name, param in saftensor_dict.items():
            # cut the parameter not in the pipeline stage.
            if _parameter_not_in_local_stage(param_name, origin_src_strategy_list, src_strategy_list) \
                    and _parameter_not_in_local_stage(param_name, origin_dst_strategy_list, dst_strategy_list):
                continue
            src_rank = rank % src_stage_device_num
            param_type_dict[param_name][src_rank] = str(param.data.dtype)
            param_total_dict[param_name][src_rank] = param
            param_attr_dict[param_name][src_rank] = (True, False)
    for local_rank_id in range(dst_stage_device_num):
        transform_param_dict = _transform_parallel_safetensor(local_rank_id, param_total_dict,
                                                              param_attr_dict, src_strategy_list, dst_strategy_list,
                                                              param_type_dict)
        save_safetensor_file = "{}{}_part{}.safetensors".format(ckpt_prefix, local_rank_id, stage_id)
        save_safetensor_file_dir = os.path.join(dst_safetensors_dir, "rank_{}".format(local_rank_id))
        if not os.path.exists(save_safetensor_file_dir):
            _make_dir(save_safetensor_file_dir, "path")
        save_safetensor_file_name = os.path.join(save_safetensor_file_dir, save_safetensor_file)
        save_file(transform_param_dict, save_safetensor_file_name)


def transform_safetensors_by_rank(rank_id, safetensor_files_map, save_safetensor_file_name,
                                  src_strategy_file=None, dst_strategy_file=None):
    """
    Transform distributed checkpoint from source sharding strategy to destination sharding strategy by rank.
    """
    if not isinstance(safetensor_files_map, dict):
        raise TypeError("The safetensor_files_map should be a dict.")
    if not isinstance(rank_id, int):
        raise TypeError("The rank_id should be a int.")
    if not isinstance(save_safetensor_file_name, str):
        raise TypeError("The save_safetensor_file_name should be a str.")
    if not save_safetensor_file_name.endswith(".safetensors"):
        raise ValueError(
            "The save_safetensor_file_name {} should end with .safetensors".format(save_safetensor_file_name))
    if dst_strategy_file and os.path.dirname(dst_strategy_file) and not os.path.exists(
            os.path.dirname(dst_strategy_file)):
        raise ValueError("The director of dst_strategy_file: {} is not exists.".
                         format(os.path.dirname(dst_strategy_file)))
    for rank, local_file in safetensor_files_map.items():
        if not os.path.exists(local_file):
            raise ValueError("safetensor file {} in rank {} not exits: ".format(local_file, rank))
    param_total_dict = defaultdict(dict)
    param_attr_dict = defaultdict(dict)
    param_type_dict = defaultdict(dict)
    src_strategy_list, dst_strategy_list = _extract_src_dst_layout_map(rank_id, src_strategy_file, dst_strategy_file)
    # src rank => local rank inside pipeline stage
    src_stage_device_num = np.prod(src_strategy_list.get(list(src_strategy_list.keys())[0])[0]) if src_strategy_list \
                                                                                                   is not None else 1
    dst_stage_device_num = np.prod(dst_strategy_list.get(list(dst_strategy_list.keys())[0])[0]) if dst_strategy_list \
                                                                                                   is not None else 1
    origin_dst_strategy_list = _extract_layout_map(dst_strategy_file)
    origin_src_strategy_list = _extract_layout_map(src_strategy_file)
    for rank, file_name in safetensor_files_map.items():
        saftensor_dict = load_file(file_name)
        for param_name, param in saftensor_dict.items():
            # cut the parameter not in the pipeline stage.
            if _parameter_not_in_local_stage(param_name, origin_src_strategy_list, src_strategy_list) \
                    and _parameter_not_in_local_stage(param_name, origin_dst_strategy_list, dst_strategy_list):
                continue
            src_rank = rank % src_stage_device_num
            param_type_dict[param_name][src_rank] = str(param.data.dtype)
            # if param.data.dtype == mstype.bfloat16:
            #     param.set_dtype(mstype.float32)
            param_total_dict[param_name][src_rank] = param
            param_attr_dict[param_name][src_rank] = (True, False)
    local_rank_id = rank_id % dst_stage_device_num
    transform_param_dict = _transform_parallel_safetensor(local_rank_id, param_total_dict,
                                                          param_attr_dict, src_strategy_list, dst_strategy_list,
                                                          param_type_dict)
    save_file(transform_param_dict, save_safetensor_file_name)


def _extrace_number(file_name):
    """get file last two number"""
    number_ls = re.findall(r'\d+', file_name)
    number_ls = [int(i) for i in number_ls]
    return number_ls[-2:]

def _collect_safetensor_files(src_safetensors_dir, format='safetensors', file_suffix=None):
    """
    Collects all safetensors files from the specified directory and its subdirectories.
    """
    if os.path.isfile(src_safetensors_dir) and format == 'safetensors' and src_safetensors_dir.endswith('safetensors'):
        return {0: src_safetensors_dir}
    safetensors_rank_dir_list = os.path.join(src_safetensors_dir, "rank_[0-9]*")
    all_safetensor_files_map = {}
    for safetensor_dir in glob.glob(safetensors_rank_dir_list):
        if not os.path.isdir(safetensor_dir):
            ms.log.warning("{} is not a directory.".format(safetensor_dir))
            continue
        rank_id_str = safetensor_dir.split('rank_')[-1]
        if not rank_id_str.isdigit():
            ms.log.warning("{} is not a expected directory, the directory should end with rank_0/rank_1.....".
                           format(safetensor_dir))
            continue
        rank_id = int(rank_id_str)
        if file_suffix is None:
            safetensor_file_name = os.path.join(safetensor_dir, f"*.{format}")
        else:
            safetensor_file_name = os.path.join(safetensor_dir, f"*{file_suffix}.{format}")
        rank_ckpts = glob.glob(safetensor_file_name)
        rank_ckpts.sort(key=_extrace_number)
        if rank_ckpts:
            all_safetensor_files_map[rank_id] = rank_ckpts[-1]
    return all_safetensor_files_map


def _find_needed_ranks(src_strategy_dict, dst_strategy_dict):
    """
    Identifies the ranks needed for transformation based on source and destination strategies.
    """
    needed_rank_list_map = defaultdict(list)
    dst_stage_device_num = _get_device_num_from_strategy(dst_strategy_dict)
    dst_stage_num = _extract_pipeline_stage_num(dst_strategy_dict)
    dst_device_num = dst_stage_device_num * dst_stage_num
    for rank in _progress_bar(range(dst_device_num)):
        needed_rank_list = ms.rank_list_for_transform(rank, src_strategy_dict, dst_strategy_dict)
        needed_rank_list_key = "-".join([str(r) for r in needed_rank_list])
        needed_rank_list_map[needed_rank_list_key].append(rank)
    return needed_rank_list_map


def load_file_by_param_name(filename, parme_name_list):
    result = {}
    with safe_open(filename, framework="np") as f:
        for k in parme_name_list:
            result[k] = f.get_tensor(k)
    return result


def _transform_parallel_safetensor(rank_id, param_total_dict, param_attr_dict, src_strategy_list,
                                   dst_strategy_list, param_total_dict_keys=None, src_strategy_file=None):
    """
    Transform model parallel dimension for distributed safetensor files.
    """
    transform_param_dict = {}
    device_num = -1
    param_total_dict_keys = list(param_total_dict.keys()) if param_total_dict_keys is None else param_total_dict_keys
    for param_name in param_total_dict_keys:
        tensor_shape = list(param_total_dict[param_name].values())[0].shape
        from_dev_matrix = [1]
        from_tensor_map = [-1] * len(tensor_shape)
        from_opt_shard_step = 0
        from_opt_shard_size = 0
        if src_strategy_list is not None:
            if param_name not in src_strategy_list:
                continue
            from_dev_matrix, from_tensor_map, from_opt_shard_step, from_opt_shard_size = _extract_layout_item(
                src_strategy_list.get(param_name))
        to_dev_matrix_origin = [1]
        to_tensor_map_origin = [-1] * len(tensor_shape)
        to_opt_shard_step = 0
        to_opt_shard_size = 0
        if dst_strategy_list is not None:
            if param_name not in dst_strategy_list:
                continue
            to_dev_matrix_origin, to_tensor_map_origin, to_opt_shard_step, to_opt_shard_size = _extract_layout_item(
                dst_strategy_list.get(param_name))
        # Add optimizer sharding dim for tensor layout
        device_num = np.prod(from_dev_matrix)
        if device_num < 1:
            raise ValueError("None of the parameters in safetensor file are in either src strategy or "
                             "dst strategy. Please check correctness of strategy files. "
                             "Param name is: {}, rank_id is {}.".format(param_name, rank_id))
        param_strategy = _get_tensor_strategy(from_dev_matrix, from_tensor_map)
        origin_tensor_shape = ()
        for i, item in enumerate(tensor_shape):
            if i == 0 and from_opt_shard_size > 0:
                origin_tensor_shape += (item * param_strategy[i] * from_opt_shard_size,)
                continue
            origin_tensor_shape += (item * param_strategy[i],)

        from_dev_matrix, from_tensor_map, from_full_tensor_shape = _construct_tensor_layout_for_opt_shard(
            from_dev_matrix, from_tensor_map, from_opt_shard_step, from_opt_shard_size, origin_tensor_shape)
        to_dev_matrix, to_tensor_map, to_full_tensor_shape = _construct_tensor_layout_for_opt_shard(
            to_dev_matrix_origin, to_tensor_map_origin, to_opt_shard_step, to_opt_shard_size, origin_tensor_shape)
        # Convert tensor layout to same device num
        from_tensor_layout, to_tensor_layout = _construct_from_to_tensor_layout(from_full_tensor_shape, from_dev_matrix,
                                                                                from_tensor_map, to_full_tensor_shape,
                                                                                to_dev_matrix, to_tensor_map)

        # when the from_layout is less devices, the safetensor_map for map[device_num] should using map[0]
        device_list = list(range(0, np.prod(from_tensor_layout[0])))
        if rank_id % device_num not in param_attr_dict[param_name] and src_strategy_file is None:
            raise ValueError("The safetensor of rank {} is missing.".format(rank_id % device_num))
        param_rank_map = _get_needed_rank_transform_operator_map_by_layouts(from_tensor_layout, to_tensor_layout,
                                                                            device_list, rank_id)

        from_info_tuple = (from_opt_shard_size, from_dev_matrix, from_tensor_map, from_full_tensor_shape)
        to_info_tuple = (to_opt_shard_size, to_dev_matrix_origin, to_tensor_map_origin, origin_tensor_shape)
        _insert_opt_shard_reshape(param_rank_map, from_info_tuple, to_info_tuple)
        transform_operator_stack = _generate_transform_operator_stack(param_rank_map, rank_id)
        param_total_dict_copy = param_total_dict[param_name].copy()
        _apply_tensor_transform_operators(transform_operator_stack, param_total_dict_copy, device_num)

        transform_param_dict[param_name] = param_total_dict_copy[rank_id % device_num]

    # Handle those parameter like learning_rate, global_step which not in strategy_file.
    for param_name in param_total_dict_keys:
        if param_name not in transform_param_dict:
            transform_para = param_total_dict[param_name][rank_id % device_num]
            transform_param_dict[param_name] = transform_para
    return transform_param_dict


[文档]def unified_safetensors(src_dir, src_strategy_file, dst_dir, merge_with_redundancy=True, file_suffix=None, max_process_num=64): """ Merge multiple safetensor files into a unified safetensor file. Args: src_dir (str): Source weight saving directory. src_strategy_file (str): Source weight segmentation strategy file. dst_dir (str): Target save directory. merge_with_redundancy (bool, optional): Whether the merged source weight files are de-duplicated and saved safetensors files. Default: ``True``, indicating that the merged source weight files are complete. file_suffix (str, optional): Specify the filename suffix for merging safetensors files. Default: ``None``, meaning all safetensors files in the source weight directory will be merged. max_process_num (int): Maximum number of processes. Default: 64. Raises: ValueError: If the safetensors file of rank is missing. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore as ms >>> src_dir = "/usr/safetensors/llama31B/4p_safetensors/" >>> src_strategy_file = "/usr/safetensors/llama31B/strategy_4p.ckpt" >>> dst_dir = "/usr/safetensors/llama31B/merge_llama31B_4p/" >>> ms.unified_safetensors(src_dir, src_strategy_file, dst_dir) """ _check_transform_safetensors(src_dir, "", src_strategy_file, None) _make_dir(dst_dir, "path") if os.path.isfile(src_dir): raise ValueError("For 'unified_safetensors', the 'src_dir' can not be a file.") all_safetensor_files_map = _collect_safetensor_files(src_dir, format="safetensors", file_suffix=file_suffix) all_ckpt_files_map = _collect_safetensor_files(src_dir, format="ckpt", file_suffix=file_suffix) if all_safetensor_files_map and all_ckpt_files_map: raise ValueError("For 'unified_safetensors', the 'src_dir' cannot contain " "both ckpt file and safetensors file simultaneously") src_strategy_dict = _build_searched_strategy(src_strategy_file) src_stage_device_num = _get_device_num_from_strategy(src_strategy_dict) dst_stage_device_num = 1 origin_src_strategy_list = _extract_layout_map(src_strategy_dict) origin_dst_strategy_list = None needed_rank_list_map = _find_needed_ranks(src_strategy_dict, dst_strategy_dict=None) for needed_rank_list, rank in needed_rank_list_map.items(): for needed_rank in needed_rank_list.split("-"): if int(needed_rank) not in all_safetensor_files_map: raise ValueError("The safetensor file of rank{} is needed for converting rank{}'s safetensor, " "but it is missing.".format(needed_rank, rank)) layout_map = _convert_to_list(src_strategy_dict) total_size = 0 actual_params = set() for _, file_name in all_safetensor_files_map.items(): total_size += os.path.getsize(file_name) / 1024 / 1024 / 1024 with safe_open(file_name, framework="np") as f: actual_params.update(f.keys()) split_num = math.ceil(total_size / 3) params_to_store = actual_params & set(layout_map.keys()) name_list = [] for name in list(params_to_store): if name.startswith("accu_grads"): continue name_list.append(name) split_list = _split_list(name_list, split_num) with safe_open(all_safetensor_files_map.get(0), framework="np") as f: all_key = f.keys() hyper_parameter = set(all_key) - set(name_list) if hyper_parameter: hyper_dict = {} for key in hyper_parameter: hyper_dict[key] = f.get_tensor(key) save_file(hyper_dict, os.path.join(dst_dir, "hyper_param.safetensors")) # save parameter map json param_name_dict = dict() for index, part_list in enumerate(split_list): for name in part_list: param_name_dict[name] = f"part{index}.safetensors" json_str = json.dumps(param_name_dict, indent=4) map_file = os.path.join(dst_dir, "param_name_map.json") with open(map_file, 'w') as f: f.write(json_str) max_process = min(split_num, max_process_num) res = [i for i in range(split_num)] res = _split_list(res, max_process) processes = [] src_strategy_name = None if not merge_with_redundancy: src_strategy_name = src_strategy_file for i in range(max_process): p = mp.Process(target=_transform_safetensors_single_semaphore, args=( needed_rank_list_map, all_safetensor_files_map, src_stage_device_num, dst_stage_device_num, src_strategy_dict, None, origin_src_strategy_list, origin_dst_strategy_list, "", dst_dir, "safetensors", None, split_list, res[i], True, src_strategy_name)) p.start() processes.append(p) for p in processes: p.join()
def _transform_safetensors_single_semaphore(needed_rank_list_map, all_safetensor_files_map, src_stage_device_num, dst_stage_device_num, src_strategy_dict, dst_strategy_dict, origin_src_strategy_list, origin_dst_strategy_list, ckpt_prefix, dst_safetensors_dir, output_format, _transform_param_list, pipe_param_list=None, file_index=None, unified_flag=False, src_strategy_file=None): for i in file_index: _transform_safetensors_single(needed_rank_list_map, all_safetensor_files_map, src_stage_device_num, dst_stage_device_num, src_strategy_dict, dst_strategy_dict, origin_src_strategy_list, origin_dst_strategy_list, ckpt_prefix, dst_safetensors_dir, output_format, _transform_param_list, pipe_param_list[i], i, unified_flag, src_strategy_file) def _split_list(split_list, split_num): split_array = np.array_split(split_list, split_num) return [array.tolist() for array in split_array] def _apply_sf_obj_transform_operators(transform_operator_stack, sf_obj, device_num): """apply safetensors object operators""" if not transform_operator_stack: return sf_obj[:] level = transform_operator_stack[-1][1] level_operators = [] while True: if not transform_operator_stack or (level != transform_operator_stack[-1][1]): tmp_tensor_dict = {} if not level_operators: continue op_name = level_operators[0][2][0] for operator_pair in level_operators: rank_id = operator_pair[0] cur_level = operator_pair[1] operator = operator_pair[2] if operator[0] != op_name: raise ValueError("The operator in the same level should be equal in the transform tensor operator " "list, but the find {} and {} in level {}".format(op_name, operator[0], cur_level)) if operator[0] != "AllConcat": sf_obj = _apply_operator(operator[0])(sf_obj, operator) continue for rank in operator[1][:-1]: if rank % device_num not in sf_obj: raise ValueError("The checkpoint file of rank {} is missing.".format(rank % device_num)) allgather_list = [sf_obj for _ in operator[1][:-1]] tmp_tensor_dict[rank_id % device_num] = _apply_operator(operator[0])(allgather_list, operator) if op_name == "AllConcat": for rank, value in tmp_tensor_dict.items(): sf_obj = value level_operators.clear() if not transform_operator_stack: break operator_pair = transform_operator_stack.pop() level = operator_pair[1] level_operators.append(operator_pair) return sf_obj def _check_name_map_value_is_str(value): """check input is bool""" if not isinstance(value, str): raise ValueError( f"For 'load_distributed_checkpoint', the value of name_map must be str, but got {type(value)}.") def _process_hyper_params(file_list, total_safetensors_dir, name_map, total_param): """process hyper params""" if 'hyper_param.safetensors' in file_list: hyper_parameter_file_name = os.path.join(total_safetensors_dir, "hyper_param.safetensors") with safe_open(hyper_parameter_file_name, framework="np") as f: for key in f.keys(): cur_param_name = name_map.get(key) if name_map is not None and key in name_map else key _check_name_map_value_is_str(cur_param_name) total_param[cur_param_name] = ms.Parameter(ms.Tensor.from_numpy(f.get_tensor(key))) return total_param def _load_parallel_checkpoint(file_info): """load parallel safetensors by merged file.""" total_safetensors_dir, dst_strategy_file, net, dst_safetensors_dir, rank_id, output_format, name_map = file_info file_list = os.listdir(total_safetensors_dir) json_files = [file for file in file_list if file.endswith('.json')] if len(file_list) == 1: logger.info("There is only one weight file in the directory, which will be automatically mapped.") file_name = os.path.join(total_safetensors_dir, file_list[0]) is_file = os.path.isfile(file_name) if not is_file: raise ValueError(f"For 'load_parallel_checkpoint', weight files must be included " f"in the `unified_safetensors_dir`.") with safe_open(file_name, framework="np") as f: keys = f.keys() values = len(keys) * [file_list[0]] param_name_map = dict(zip(keys, values)) else: if len(json_files) != 1: raise ValueError(f"For 'load_parallel_checkpoint', the number of json files in 'total_safetensors_dir' " f"must be 1, but got {len(json_files)}.") param_name_json = os.path.join(total_safetensors_dir, json_files[0]) with open(param_name_json, 'r') as f: param_name_map = json.load(f) if dst_strategy_file is not None: _, dst_strategy_list = _extract_src_dst_layout_map(rank_id, None, dst_strategy_file) param_list = dst_strategy_list.keys() else: dst_strategy_list = None param_list = param_name_map.keys() total_param = dict() dst_stage_device_num = np.prod(dst_strategy_list.get(list(dst_strategy_list.keys())[0])[0]) if dst_strategy_list \ is not None else 1 local_rank_id = rank_id % dst_stage_device_num for param_name in param_list: if param_name not in param_name_map: continue file_name = os.path.join(total_safetensors_dir, param_name_map[param_name]) with safe_open(file_name, framework="np") as f: if param_name not in f.keys(): continue sf_obj = f.get_slice(param_name) tensor_shape = sf_obj.get_shape() from_dev_matrix = [1] from_tensor_map = [-1] * len(tensor_shape) from_opt_shard_step = 0 from_opt_shard_size = 0 if dst_strategy_list is not None: if param_name not in dst_strategy_list: continue to_dev_matrix_origin, to_tensor_map_origin, to_opt_shard_step, to_opt_shard_size = _extract_layout_item( dst_strategy_list.get(param_name)) device_num = np.prod(from_dev_matrix) param_strategy = _get_tensor_strategy(from_dev_matrix, from_tensor_map) origin_tensor_shape = () for i, item in enumerate(tensor_shape): if i == 0 and from_opt_shard_size > 0: origin_tensor_shape += (item * param_strategy[i] * from_opt_shard_size,) continue origin_tensor_shape += (item * param_strategy[i],) from_dev_matrix, from_tensor_map, from_full_tensor_shape = _construct_tensor_layout_for_opt_shard( from_dev_matrix, from_tensor_map, from_opt_shard_step, from_opt_shard_size, origin_tensor_shape) to_dev_matrix, to_tensor_map, to_full_tensor_shape = _construct_tensor_layout_for_opt_shard( to_dev_matrix_origin, to_tensor_map_origin, to_opt_shard_step, to_opt_shard_size, origin_tensor_shape) # Convert tensor layout to same device num from_tensor_layout, to_tensor_layout = _construct_from_to_tensor_layout(from_full_tensor_shape, from_dev_matrix, from_tensor_map, to_full_tensor_shape, to_dev_matrix, to_tensor_map) # when the from_layout is less devices, the safetensor_map for map[device_num] should using map[0] device_list = list(range(0, np.prod(from_tensor_layout[0]))) param_rank_map = _get_needed_rank_transform_operator_map_by_layouts(from_tensor_layout, to_tensor_layout, device_list, local_rank_id) from_info_tuple = (from_opt_shard_size, from_dev_matrix, from_tensor_map, from_full_tensor_shape) to_info_tuple = (to_opt_shard_size, to_dev_matrix_origin, to_tensor_map_origin, origin_tensor_shape) _insert_opt_shard_reshape(param_rank_map, from_info_tuple, to_info_tuple) transform_operator_stack = _generate_transform_operator_stack(param_rank_map, local_rank_id) slice_param = _apply_sf_obj_transform_operators(transform_operator_stack, sf_obj, device_num) else: slice_param = sf_obj[:] cur_param_name = name_map.get(param_name) if name_map is not None and param_name in name_map else param_name _check_name_map_value_is_str(cur_param_name) total_param[cur_param_name] = ms.Parameter(ms.Tensor.from_numpy(slice_param)) total_param = _process_hyper_params(file_list, total_safetensors_dir, name_map, total_param) if net is not None: param_not_load, ckpt_not_load = ms.load_param_into_net(net, total_param) return param_not_load, ckpt_not_load _make_dir(os.path.join(dst_safetensors_dir, f"rank_{rank_id}"), "path") ms.save_checkpoint(total_param, os.path.join(dst_safetensors_dir, f"rank_{rank_id}", f"net.{output_format}"), format=output_format) return None def _get_slice(rank_id, sf_obj, param_name, dst_strategy_list): """get slice op""" tensor_shape = sf_obj.get_shape() to_dev_matrix_origin, to_tensor_map_origin, to_opt_shard_step, to_opt_shard_size = _extract_layout_item( dst_strategy_list.get(param_name)) # Add optimizer sharding dim for tensor layout to_dev_matrix, to_tensor_map, _ = _construct_tensor_layout_for_opt_shard( to_dev_matrix_origin, to_tensor_map_origin, to_opt_shard_step, to_opt_shard_size, tensor_shape) slice_op = _load_tensor_shape(to_dev_matrix, to_tensor_map, full_shape=tensor_shape, rank_id=rank_id) shape = None if to_opt_shard_size > 0: to_tensor_strategy = _get_tensor_strategy(to_dev_matrix_origin, to_tensor_map_origin) to_slice_tensor_shape = () for i, item in enumerate(tensor_shape): if i == 0 and to_opt_shard_size > 0: to_slice_tensor_shape += (item // (to_tensor_strategy[i] * to_opt_shard_size),) continue to_slice_tensor_shape += (item // to_tensor_strategy[i],) shape = list(to_slice_tensor_shape) return slice_op, shape __all__ = ["_transform_safetensors", "transform_safetensors_by_stage", "transform_safetensors_by_rank", "unified_safetensors"]