mindspore.parallel.algo_parameter_config 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Configuration of parameters for strategy-searching algorithm in auto_parallel"""
from __future__ import absolute_import
from __future__ import division

import threading

from mindspore._c_expression import CostModelContext
from mindspore._checkparam import args_type_check

__all__ = ["get_algo_parameters", "reset_algo_parameters", "set_algo_parameters"]

_PARAMETER_CONFIG = None


class _AlgoParameterConfig:
    """
    _AlgoParameterConfig is the configuration of setting parameters used in th algorithm.

    Note:
        Creating a config through instantiating _AlgoParameterConfig object is not recommended.
        Use algo_parameter_config() to get the configuration since _AlgoParameterConfig is singleton.
    """
    _instance = None
    _instance_lock = threading.Lock()

    def __init__(self):
        self._config_handle = CostModelContext.get_instance()

    def check_config_handle(self):
        """
        Check config handle.

        Raises:
            ValueError: If the config handle is none.
        """
        if self._config_handle is None:
            raise ValueError("Config handle is none!!!")

    def set_fully_use_devices(self, not_fully):
        """
        Set the flag of whether only generating strategies that fully use all available devices.
        Default: ``True``

        Args:
            not_fully (bool): The flag.
        """
        self.check_config_handle()
        self._config_handle.set_fully_use_devices(not_fully)

    def get_fully_use_devices(self):
        """
        Get the flag of whether only generating strategies that fully use all available devices.

        Return:
            The flag.
        """
        self.check_config_handle()
        return self._config_handle.get_fully_use_devices()

    def set_elementwise_op_strategy_follow(self, element_strategy_follow):
        """
        Set the flag of whether the elementwise operator has the same strategies as its subsequent operators.
        Default: False

        Args:
            element_strategy_follow (bool): The flag.
        """
        self.check_config_handle()
        self._config_handle.set_elementwise_op_strategy_follow(element_strategy_follow)

    def get_elementwise_op_strategy_follow(self):
        """
        Get the flag of whether the elementwise operator has the same strategies as its subsequent operators.

        Returns:
            The flag.
        """
        self.check_config_handle()
        return self._config_handle.get_elementwise_op_strategy_follow()

    def set_tensor_slice_align_enable(self, align_enable):
        """
        Set the flag of whether to check the shape of tensor slice of MatMul.
        Default: False

        Args:
            align_enable (bool): The flag.
        """
        self.check_config_handle()
        self._config_handle.set_tensor_slice_align_enable(align_enable)

    def get_tensor_slice_align_enable(self):
        """
        Get the flag of whether to check the shape of tensor slice of MatMul.

        Returns:
            The flag.
        """
        self.check_config_handle()
        return self._config_handle.get_tensor_slice_align_enable()

    def set_tensor_slice_align_size(self, align_size):
        """
        Set tensor slice align size.

        Args:
            align_size (int): The minimum tensor slice shape.

        Raises:
            ValueError: If align_size is not in [1, 1024].
        """
        self.check_config_handle()
        if align_size < 1 or align_size > 1024:
            raise ValueError('Align_size must be in [1, 1024], but got {}'.format(align_size))
        self._config_handle.set_tensor_slice_align_size(align_size)

    def get_tensor_slice_align_size(self):
        """
        Get the tensor slice align size.

        Returns:
            The size.
        """
        self.check_config_handle()
        return self._config_handle.get_tensor_slice_align_size()

    def set_dp_algo_enable_approxi(self, enable_flag):
        """
        Set the flag of whether to enable the approximation in the DP algorithms.
        Default: ``False``.

        Args:
            enable_flag (bool): The flag.
        """
        self.check_config_handle()
        self._config_handle.set_dp_algo_enable_approxi(enable_flag)

    def get_dp_algo_enable_approxi(self):
        """
        Get the flag of whether to enable the approximation in the DP algorithms.

        Returns:
            The flag.
        """
        self.check_config_handle()
        return self._config_handle.get_dp_algo_enable_approxi()

    def set_dp_algo_approxi_epsilon(self, epsilon):
        """
        Set the epsilon value used in the approximation DP algorithm.
        Default: 0.1.

        Args:
            epsilon (float): The epsilon value, should in the range dp_(0, 1].
        """
        self.check_config_handle()
        self._config_handle.set_dp_algo_approxi_epsilon(epsilon)

    def get_dp_algo_approxi_epsilon(self):
        """
        Get the epsilon value used in the approximation DP algorithm.

        Returns:
            The epsilon value.
        """
        self.check_config_handle()
        return self._config_handle.get_dp_algo_approxi_epsilon()

    def reset_algo_parameters(self):
        """
        Reset algorithm parameter attributes.
        """
        self.check_config_handle()
        self._config_handle.reset_algo_parameters()


_G_ALGO_PARAMETER_CONFIG = None


def _algo_parameter_config():
    """
    Get the global _G_ALGO_PARAMETER_CONFIG. If it is not created, create a new one.

    Returns:
        The global _G_ALGO_PARAMETER_CONFIG.
    """
    global _G_ALGO_PARAMETER_CONFIG
    if _G_ALGO_PARAMETER_CONFIG is None:
        _G_ALGO_PARAMETER_CONFIG = _AlgoParameterConfig()
    return _G_ALGO_PARAMETER_CONFIG


set_algo_parameters_config_func_map = {
    "fully_use_devices": _algo_parameter_config().set_fully_use_devices,
    "elementwise_op_strategy_follow": _algo_parameter_config().set_elementwise_op_strategy_follow,
    "tensor_slice_align_enable": _algo_parameter_config().set_tensor_slice_align_enable,
    "tensor_slice_align_size": _algo_parameter_config().set_tensor_slice_align_size,
    "enable_algo_approxi": _algo_parameter_config().set_dp_algo_enable_approxi,
    "algo_approxi_epsilon": _algo_parameter_config().set_dp_algo_approxi_epsilon}


get_algo_parameters_config_func_map = {
    "fully_use_devices": _algo_parameter_config().get_fully_use_devices,
    "elementwise_op_strategy_follow": _algo_parameter_config().get_elementwise_op_strategy_follow,
    "tensor_slice_align_enable": _algo_parameter_config().get_tensor_slice_align_enable,
    "tensor_slice_align_size": _algo_parameter_config().get_tensor_slice_align_size,
    "enable_algo_approxi": _algo_parameter_config().get_dp_algo_enable_approxi,
    "algo_approxi_epsilon": _algo_parameter_config().get_dp_algo_approxi_epsilon}


[文档]@args_type_check(tensor_slice_align_enable=bool, tensor_slice_align_size=int, fully_use_devices=bool, elementwise_op_strategy_follow=bool, enable_algo_approxi=bool, algo_approxi_epsilon=float) def set_algo_parameters(**kwargs): """ Set parameters in the algorithm for parallel strategy searching. Note: The attribute name is required. This interface works ONLY in AUTO_PARALLEL mode. Args: fully_use_devices (bool): Whether ONLY searching strategies that fully use all available devices. Default: ``False`` . For example with 8 devices available, if set ``True`` , strategy (4, 1) will not be included in ReLU's candidate strategies, because strategy (4, 1) only utilizes 4 devices. elementwise_op_strategy_follow (bool): Whether the elementwise operator has the consistent strategies as its subsequent operators. Elementwise operators refer to operators that operate on input element by element, such as Add, ReLU, etc. Default: ``False`` . For the example of ReLU followed by Add, if this flag is set ``True`` , then the searched strategy by the algorithm guarantees that strategies of these two operators are consistent, e.g., ReLU's strategy (8, 1) and Add's strategy ((8, 1), (8, 1)). enable_algo_approxi (bool): Whether to enable the approximation in the algorithms. Default: ``False`` . Due to large solution space in searching parallel strategy for large DNN model, the algorithm takes fairly long time in this case. To mitigate it, if this flag is set ``True`` , an approximation is made to discard some candidate strategies, so that the solution space is shrunken. algo_approxi_epsilon (float): The epsilon value used in the approximation algorithm. Default: ``0.1`` . This value describes the extent of approximation. For example, the number of candidate strategies of an operator is S, if 'enable_algo_approxi' is ``True`` , then the remaining strategies is of size: min{S, 1/epsilon}. tensor_slice_align_enable (bool): Whether to check the shape of tensor slice of MatMul. Default: ``False`` . Due to properties of some hardware, MatMul kernel only with large shapes can show advantages. If this flag is ``True`` , then the slice shape of MatMul is checked to prevent irregular shapes. tensor_slice_align_size (int): The minimum tensor slice shape of MatMul, the value must be in [1, 1024]. Default: ``16`` . If 'tensor_slice_align_enable' is set ``True`` , then the slice size of last dimension of MatMul tensors should be multiple of this value. Raises: ValueError: If context keyword is not recognized. Examples: .. note:: Before running the following examples, you need to configure the communication environment variables. For the Ascend devices, users need to prepare the rank table, set rank_id and device_id. Please see the `rank table startup <https://www.mindspore.cn/docs/en/master/model_train/parallel/rank_table.html>`_ for more details. For the GPU devices, users need to prepare the host file and mpi, please see the `mpirun startup <https://www.mindspore.cn/docs/en/master/model_train/parallel/mpirun.html>`_ . For the CPU device, users need to write a dynamic cluster startup script, please see the `Dynamic Cluster Startup <https://www.mindspore.cn/docs/en/master/model_train/parallel/dynamic_cluster.html>`_ . >>> import numpy as np >>> import mindspore as ms >>> import mindspore.dataset as ds >>> from mindspore import nn, ops, train >>> from mindspore.communication import init >>> from mindspore.common.initializer import initializer >>> >>> ms.set_context(mode=ms.GRAPH_MODE) >>> ms.set_auto_parallel_context(parallel_mode=ms.ParallelMode.AUTO_PARALLEL, ... search_mode="sharding_propagation") >>> init() >>> ms.set_algo_parameters(fully_use_devices=True) >>> ms.set_algo_parameters(elementwise_op_strategy_follow=True) >>> ms.set_algo_parameters(enable_algo_approxi=True) >>> ms.set_algo_parameters(algo_approxi_epsilon=0.2) >>> ms.set_algo_parameters(tensor_slice_align_enable=True) >>> ms.set_algo_parameters(tensor_slice_align_size=8) >>> >>> # Define the network structure. >>> class Dense(nn.Cell): ... def __init__(self, in_channels, out_channels): ... super().__init__() ... self.weight = ms.Parameter(initializer("normal", [in_channels, out_channels], ms.float32)) ... self.bias = ms.Parameter(initializer("normal", [out_channels], ms.float32)) ... self.matmul = ops.MatMul() ... self.add = ops.Add() ... ... def construct(self, x): ... x = self.matmul(x, self.weight) ... x = self.add(x, self.bias) ... return x >>> >>> class FFN(nn.Cell): ... def __init__(self): ... super().__init__() ... self.flatten = ops.Flatten() ... self.dense1 = Dense(28*28, 64) ... self.relu = ops.ReLU() ... self.dense2 = Dense(64, 10) ... ... def construct(self, x): ... x = self.flatten(x) ... x = self.dense1(x) ... x = self.relu(x) ... x = self.dense2(x) ... return x >>> net = FFN() >>> net.dense1.matmul.shard(((2, 1), (1, 2))) >>> >>> # Create dataset. >>> step_per_epoch = 16 >>> def get_dataset(*inputs): ... def generate(): ... for _ in range(step_per_epoch): ... yield inputs ... return generate >>> >>> input_data = np.random.rand(1, 28, 28).astype(np.float32) >>> label_data = np.random.rand(1).astype(np.int32) >>> fake_dataset = get_dataset(input_data, label_data) >>> dataset = ds.GeneratorDataset(fake_dataset, ["input", "label"]) >>> # Train network. >>> optimizer = nn.Momentum(net.trainable_params(), 1e-3, 0.1) >>> loss_fn = nn.CrossEntropyLoss() >>> loss_cb = train.LossMonitor() >>> model = ms.Model(network=net, loss_fn=loss_fn, optimizer=optimizer) >>> model.train(epoch=2, train_dataset=dataset, callbacks=[loss_cb]) """ for key, value in kwargs.items(): if key not in set_algo_parameters_config_func_map: raise ValueError("Set context keyword %s is not recognized!" % key) set_func = set_algo_parameters_config_func_map[key] set_func(value)
[文档]def get_algo_parameters(attr_key): """ Get the algorithm parameter config attributes. Note: The attribute name is required. This interface works ONLY in AUTO_PARALLEL mode. Args: attr_key (str): The key of the attribute. The keys include: "fully_use_devices", "elementwise_op_strategy_follow", "enable_algo_approxi", "algo_approxi_epsilon", "tensor_slice_align_enable","tensor_slice_align_size". See :func:`mindspore.set_algo_parameters` for more details about the meaning of the attributes. Returns: Return attribute value according to the key. Raises: ValueError: If context keyword is not recognized. Examples: >>> import mindspore as ms >>> ms.get_algo_parameters("fully_use_devices") False """ if attr_key not in get_algo_parameters_config_func_map: raise ValueError("Get context keyword %s is not recognized!" % attr_key) get_func = get_algo_parameters_config_func_map[attr_key] return get_func()
[文档]def reset_algo_parameters(): """Reset the algorithm parameter attributes. Note: This interface works ONLY in AUTO_PARALLEL mode. After reset, the values of the attributes are: - fully_use_devices: False. - elementwise_op_strategy_follow: False. - enable_algo_approxi: False. - algo_approxi_epsilon: 0.1. - tensor_slice_align_enable: False. - tensor_slice_align_size: 16. Examples: >>> import mindspore as ms >>> ms.reset_algo_parameters() """ _algo_parameter_config().reset_algo_parameters()