mindspore.ops.operations.manually_defined._inner 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""
Inner-defined operators.
"""

import numbers
import numpy as np
from mindspore.common import dtype as mstype
from mindspore import _checkparam as validator
from mindspore.common._decorator import deprecated
from mindspore.ops.primitive import prim_attr_register, Primitive
from mindspore import log as logger


[文档]class ScalarCast(Primitive): """ 'ops.ScalarCast' is deprecated from version 2.3 and will be removed in a future version, please use `int(x)` or `float(x)` instead. Supported Platforms: Deprecated Examples: >>> import mindspore >>> from mindspore import ops >>> scalar_cast = ops.ScalarCast() >>> output = scalar_cast(255.0, mindspore.int64) >>> print(output) 255 """ @deprecated("2.3", "ops.ScalarCast", False) @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['input_x', 'input_y'], outputs=['output_data']) def __call__(self, input_x, input_y): validator.check_value_type("x", input_x, [bool, numbers.Number], self.name) if input_y not in (mstype.int64, mstype.float64, mstype.bool_): raise ValueError(f"For 'ScalarCast', the supported type is in the list: " f"[mindspore.int64, mindspore.float64, mindspore.bool], but got {input_y}") dtype = input_y if isinstance(dtype, type(mstype.tensor_type)): dtype = dtype.element_type() np_dtype = str(dtype) value = np.cast[np_dtype.lower()](input_x) value = value.item() return value
class TensorReport(Primitive): @prim_attr_register def __init__(self): """Initialize TensorReport""" self.add_prim_attr("side_effect_io", True) self.add_prim_attr("channel_name", "ms_tensor_report") def __call__(self, file, input_x): logger.warning("TensorReport doesn't support pynative mode.")