mindspore.communication._comm_helper 源代码

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""comm_helper"""

import os
import glob
import ctypes

import sys
from sys import excepthook

from mindspore import context
from mindspore.parallel._ps_context import _is_role_sched, _is_ps_mode,\
                                           _get_ps_context
from mindspore import log as logger
from mindspore._c_expression import CollectiveManager, set_cluster_exit_with_exception, MSContext
from mindspore.common._utils import load_lib

HCCL_LIB = 'libhccl_plugin.so'


def hccl_load_lib():
    """load hccl lib"""
    try:
        base_dir = os.path.dirname(os.path.realpath(__file__))
        lib_path = os.path.join(base_dir, "../lib/plugin/ascend", HCCL_LIB)
        ctypes.CDLL(lib_path)
    except Exception as exc:
        raise RuntimeError('Get hccl lib error.') from exc

_HCCL_TEST_AVAILABLE = False

try:
    if MSContext.get_instance().is_ascend_plugin_loaded():
        hccl_load_lib()
except RuntimeError:
    _HCCL_TEST_AVAILABLE = True

if _HCCL_TEST_AVAILABLE:
    try:
        import hccl_test.manage.api as hccl
    except ImportError:
        _HCCL_TEST_AVAILABLE = False


HCCL_WORLD_COMM_GROUP = "hccl_world_group"
NCCL_WORLD_COMM_GROUP = "nccl_world_group"
MCCL_WORLD_COMM_GROUP = "mccl_world_group"

DEVICE_TO_BACKEND = {
    "Ascend": "hccl",
    "GPU": "nccl",
    "CPU": "mccl"
}

class Backend:
    """
    Class for available backends.

    Note:
        The backends' value should be string, e.g., "hccl".
        If backend is set to Backend.UNDEFINED, it will be seen as invaliad.

    Args:
        name (str): The name of backend.

    Raises:
        TypeError: If name is not a string.
        ValueError: If backend is invalid.

    Examples:
        >>> Backend("abc")
        >>> hccl = Backend("hccl")
    """
    UNDEFINED = "undefined"
    HCCL = "hccl"
    NCCL = "nccl"
    MCCL = "mccl"

    @staticmethod
    def __new__(cls, name):
        """Create instance object of Backend."""
        if not isinstance(name, str):
            raise TypeError("For 'Backend', the class variable 'name' must be a string, "
                            "but got the type : {}".format(type(name)))
        value = getattr(Backend, name.upper(), Backend.UNDEFINED)
        if value == Backend.UNDEFINED:
            raise ValueError("For 'Backend', the class variable 'name' {} is not supported, "
                             "please use hccl or nccl.".format(name))
        return value


DEFAULT_BACKEND = Backend("hccl")


[文档]class GlobalComm: """ World communication information. The GlobalComm is a global class. The members contain: - ``BACKEND`` : The communication library used, using ``"hccl"`` / ``"nccl"`` / ``"mccl"`` . ``"hccl"`` means Huawei Collective Communication Library(HCCL), ``"nccl"`` means NVIDIA Collective Communication Library(NCCL), ``"mccl"`` means MindSpore Collective Communication Library(MCCL). - ``WORLD_COMM_GROUP`` : Global communication domain, using ``"hccl_world_group"`` / ``"nccl_world_group"`` / ``"mccl_world_group"`` . """ BACKEND = DEFAULT_BACKEND WORLD_COMM_GROUP = HCCL_WORLD_COMM_GROUP INITED = False CHECK_ENVS = True
class _ExistingGroup: """ The communication groups which exist in the progress. """ ITEMS = {} GROUP_RANKS = {} def _hccl_test(): return _HCCL_TEST_AVAILABLE and GlobalComm.BACKEND == Backend.HCCL def _check_mpi_envs(): """ Check whether mpi environment variables have been exported or not. return True if mpi environment variables have been exported, False otherwise. """ ompi_command_env = os.getenv("OMPI_COMMAND") pmix_rank_env = os.getenv("PMIX_RANK") if ompi_command_env and pmix_rank_env: return True return False def _check_bypass_rank_id_and_size(): ''' Whether bypass calling c++ API to get rank id and size, instead, use fake rank id 0 and rank size 1. This returns True when this process is Scheduler node or is Server node in old Parameter Server training mode. ''' if _is_role_sched(): return True device_target = context.get_context("device_target") if _is_ps_mode() and _get_ps_context("worker_num") == 1 and device_target == "Ascend": return True return False def _set_elegant_exit_handle(): sys.excepthook = lambda *args: (set_cluster_exit_with_exception(), excepthook(*args)) def check_parameter_available(func): """ Check parameter is available. If not available, raise Error. Args: func (Function): The function to be run. Raises: RuntimeError. Returns: Wrapper. If not available, raise Error. """ def wrapper(*args, **kargs): if not GlobalComm.INITED: raise RuntimeError("Distributed Communication has not been inited") group = None if "group" in kargs.keys(): group = kargs.get("group") if group is not None and not isinstance(group, str): raise TypeError("The parameter 'group' should be str or None, " "but got the type : {}".format(type(group))) if group is None: group = GlobalComm.WORLD_COMM_GROUP return func(*args, **kargs) return wrapper def _is_available(): """ Returns `True` if distributed module is available. Note: Always returns `True` because MindSpore always has distributed ability on all platforms. """ return True def _is_initialized(): """ Checks if distributed module is successfully initialized. """ return CollectiveManager.get_instance().initialized() def _get_backend(): """ Returns the backend of communication process groups. Note: Only one communication backend is supported by MindSpore for each process. It should be one of `hccl`/`nccl`/`mccl`. """ return GlobalComm.BACKEND def _is_hccl_available(): """ Checks if `hccl` backend is available. """ return _HCCL_TEST_AVAILABLE def _is_nccl_available(): """ Checks if `nccl` backend is available. """ base_dir = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.join(base_dir, "../lib/plugin/gpu*/libnvidia_collective.so") file_paths = glob.glob(lib_path) return all(list(load_lib(f) for f in file_paths)) def _is_mpi_available(): """ Checks if OpenMPI's library is available. """ base_dir = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.join(base_dir, "../lib/libmpi_collective.so") return load_lib(lib_path) @check_parameter_available def _get_rank_helper(group): """ The Helper to do get_rank_id. Args: group (str): The communication group. backend (str): The backend, like "hccl". Raises: ValueError: If backend is invalid. Returns: Integer. The local rank id of the calling process. """ if _check_bypass_rank_id_and_size(): rank_id = 0 return rank_id if _hccl_test(): return hccl.get_rank_id(group) rank_id = CollectiveManager.get_instance().get_rank_id(group) return rank_id @check_parameter_available def _get_local_rank_helper(group): """ The Helper to do get_local_rank_id. Args: group (str): The communication group. backend (str): The backend, like "hccl". Raises: ValueError: If backend is invalid. Returns: Integer. The local rank id of the calling process. """ if _check_bypass_rank_id_and_size(): local_rank_id = 0 return local_rank_id if _hccl_test(): return hccl.get_local_rank_id(group) rank_id = CollectiveManager.get_instance().get_local_rank_id(group) return rank_id @check_parameter_available def _get_size_helper(group): """ The Helper to do get_rank_size. Args: group (str): The communication group. backend (str): The backend, like "hccl". Raises: ValueError: If backend is invalid. Returns: Integer. The rank size of specified group. """ if _check_bypass_rank_id_and_size(): size = 1 return size if _hccl_test(): return hccl.get_rank_size(group) size = CollectiveManager.get_instance().get_group_size(group) return size @check_parameter_available def _get_local_size_helper(group): """ The Helper to do get_local_rank_size. Args: group (str): The communication group. backend (str): The backend, like "hccl". Raises: ValueError: If backend is invalid. Returns: Integer. The local rank size where the calling process is being within specified group. """ size = CollectiveManager.get_instance().get_local_group_size(group) return size @check_parameter_available def _get_world_rank_from_group_rank_helper(group, group_rank_id): """ The Helper to do get_world_rank_from_group_rank. Args: group (str): The user communication group. group_rank_id (int): A rank id in user communication group. backend (str): The backend, like "hccl". Raises: TypeError: If group_rank_id is not int. ValueError: If group is "hccl_world_group" or backend is invalid. Returns: Integer. A rank id in world communication group. """ if not isinstance(group_rank_id, int): raise TypeError("For 'get_world_rank_from_group_rank', the argument 'group_rank_id' must be" " type of int, but got 'group_rank_id' type : {}.".format(type(group_rank_id))) if _hccl_test(): return hccl.get_world_rank_from_group_rank(group, group_rank_id) world_rank_id = CollectiveManager.get_instance().get_world_rank_from_group_rank(group, group_rank_id) return world_rank_id @check_parameter_available def _get_group_rank_from_world_rank_helper(world_rank_id, group): """ The Helper to do get_group_rank_from_world_rank. Args: world_rank_id (int): A rank id in world communication group. group (str): The user communication group. backend (str): The backend, like "hccl". Raises: TypeError: If world_rank_id is not int. ValueError: If group is 'hccl_world_group' or backend is invalid. Returns: Integer. A rank id in user communication group. """ group_rank_id = None if not isinstance(world_rank_id, int): raise TypeError("For 'get_group_rank_from_world_rank', the argument 'world_rank_id' must be type of int, " "but got 'world_rank_id' type : {}.".format(type(world_rank_id))) if _hccl_test(): return hccl.get_group_rank_from_world_rank(world_rank_id, group) group_rank_id = CollectiveManager.get_instance().get_group_rank_from_world_rank(world_rank_id, group) return group_rank_id @check_parameter_available def _get_group_rank_from_world_rank_from_cache_helper(world_rank_id, group): """ The Helper to do get_group_rank_from_world_rank_from_cache. Args: world_rank_id (int): A rank id in world communication group. group (str): The user communication group. Raises: TypeError: If world_rank_id is not int. KeyError: If group and world_rank_id is not found in cache. Returns: Integer. A rank id in user communication group. """ if not isinstance(world_rank_id, int): raise TypeError("For 'get_group_rank_from_world_rank_from_cache', the argument 'world_rank_id' must be type of " "int, but got 'world_rank_id' type : {}.".format(type(world_rank_id))) if group == GlobalComm.WORLD_COMM_GROUP: # world_rank_id is same with group_rank_id in WORLD_COMM_GROUP return world_rank_id if group not in _ExistingGroup.GROUP_RANKS: raise KeyError("For 'get_group_rank_from_world_rank_from_cache', the argument 'group' is not " "found in GROUP_RANKS, 'group' : {}, 'world_rank_id' : {}".format(group, world_rank_id)) if world_rank_id not in _ExistingGroup.GROUP_RANKS[group]: raise KeyError("For 'get_group_rank_from_world_rank_from_cache', the argument 'world_rank_id' is not " "found in GROUP_RANKS, 'group' : {}, 'world_rank_id' : {}".format(group, world_rank_id)) return _ExistingGroup.GROUP_RANKS[group][world_rank_id] @check_parameter_available def _get_group_ranks(group): """ The Helper to do get_group_ranks. Args: group (str): The communication group. Returns: List. The ranks of specified group. """ return CollectiveManager.get_instance().get_group_ranks(group) @check_parameter_available def _create_group_helper(group, rank_ids): """ The Helper to do create_group. Args: group (str): The communication group. rank_ids (list): Rank ids in the group. backend (str): The backend, like "hccl". Raises: TypeError: If rank_ids is not a list. ValueError: If rank_ids size is not larger than 1 or rank_ids has duplicate data or backend is invalid. """ if group in _ExistingGroup.ITEMS.keys(): if rank_ids != _ExistingGroup.ITEMS.get(group): raise ValueError("The group {} has been created, the rank_list is {}, " "but current rank_list for the group is {}". format(group, _ExistingGroup.ITEMS[group], rank_ids)) logger.warning("%r group has existed.", group) return if not isinstance(rank_ids, list): raise TypeError("For 'create_group', the argument 'rank_ids' must be type of list, " "but got 'rank_ids' type : {}.".format(type(rank_ids))) rank_size = len(rank_ids) if rank_size < 1: raise ValueError("For 'create_group', the argument 'rank_ids' size should be greater than 1, " "but got 'rank_ids' size : {}.".format(len(rank_ids))) if len(rank_ids) - len(list(set(rank_ids))) > 0: raise ValueError("List rank_ids in Group {} has duplicate data!".format(group)) if _hccl_test(): hccl.create_group(group, rank_size, rank_ids) else: result = CollectiveManager.get_instance().create_group(group, rank_ids) if not result: raise RuntimeError("Failed to create communication group for {} with rank ids {}. " "If NCCL is used, 'export NCCL_DEBUG=INFO' " "is suggested before launching jobs.".format(group, rank_ids)) _ExistingGroup.ITEMS[group] = rank_ids sorted_ranks = sorted(rank_ids) _ExistingGroup.GROUP_RANKS[group] = {world_rank_id: group_rank_id for group_rank_id, world_rank_id in enumerate(sorted_ranks)} @check_parameter_available def _destroy_group_helper(group): """ The Helper to do destroy_group. Args: group (str): The user communication group. backend (str): The backend, like "hccl". Raises: ValueError: If group is "hccl_world_group" or backend is invalid. """ if group == GlobalComm.WORLD_COMM_GROUP: raise ValueError("The world_group does not support destruction.") if _hccl_test(): hccl.create_group(group) else: CollectiveManager.get_instance().destroy_group(group) def _get_group_map(): """Get the group map""" return CollectiveManager.get_instance().get_group_map() def _wait_all_comm_init(): """Wait for all communicators to be initialized.""" return CollectiveManager.get_instance().wait_all_comm_init()