# Copyright 2022-2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""mutable function for setting constants mutable."""
from __future__ import absolute_import
from mindspore.common.tensor import Tensor
from mindspore._c_expression import TensorPy as Tensor_
from mindspore import log as logger
_check_elements_set = set()
class _Int(int):
pass
class _Float(float):
pass
class _Tuple(tuple):
pass
class _List(list):
pass
class _Dict(dict):
pass
# pylint: disable=super-init-not-called
class _Bool(int):
"""Define a _Bool class that inherits from int, because base class 'bool' is a marked final."""
def __init__(self, value):
self.value = bool(value)
@property
def __class__(self):
return bool
def __and__(self, x):
return self.value & x
def __rand__(self, x):
return x & self.value
def __or__(self, x):
return self.value | x
def __ror__(self, x):
return x | self.value
def __xor__(self, x):
return self.value ^ x
def __rxor__(self, x):
return x ^ self.value
def __str__(self):
return str(self.value)
def __repr__(self):
return repr(self.value)
def __ms_mutable_bool__(self):
pass
def _check_element_type_recursion(value):
"""Check if all the elements are valid or self reference."""
if id(value) in _check_elements_set:
return False
_check_elements_set.add(id(value))
if isinstance(value, (tuple, list)):
for element in value:
if not _check_element_type_recursion(element):
return False
_check_elements_set.remove(id(element))
return True
if isinstance(value, dict):
for element in value.values():
if not _check_element_type_recursion(element):
return False
_check_elements_set.remove(id(element))
return True
return isinstance(value, (Tensor, Tensor_, int, float))
def _check_element_type(value):
"""Check if all the elements are valid."""
flag = _check_element_type_recursion(value)
_check_elements_set.clear()
return flag
[文档]def mutable(input_data, dynamic_len=False):
"""
Make a constant value mutable.
Currently, all the inputs of Cell except Tensor such as scalar, tuple, list and dict, are regarded as constant
values. The constant values are non-differentiable and used to do constant folding in the optimization process.
Besides, currently when the network input is tuple[Tensor], list[Tensor] or dict[Tensor], even without changing
the shape and dtype of the Tensors, the network will be re-compiled when calling this network repeatedly because
the these inputs are regarded as constant values.
To solve the above problems, we provide api `mutable` to make the constant inputs of Cell 'mutable'. A 'mutable'
input means that it is changed to be a variable input just like Tensor and the most important thing is that it
will be differentiable.
When the `input_data` is tuple or list and `dynamic_len` is False, `mutable` will return a constant length tuple
or list with all mutable elements. If `dynamic_len` is True, the length of the return tuple or list will be dynamic.
When a dynamic-length tuple or list returned by `mutable` is used as input to a network
and the network is called repeatedly, and
the length of the tuple or list is different for each run, it does not need to be re-compiled.
Args:
input_data (Union[Tensor, scalar, tuple, list, dict]): The input data to be made mutable. If
'input_data' is list/tuple/dict, the type of each element should also in the valid types.
dynamic_len (bool, optional): Whether to set the whole sequence to be dynamic length. In graph compilation, if
`dynamic_len` is ``True`` , the `input_data` must be list or tuple and the elements of `input_data` must
have the same type and shape. Default: ``False`` .
.. warning::
This is an experimental API that is subject to change or deletion.
`dynamic_len` is an experimental argument. Currently, `dynamic_len` is not supported to be ``True`` .
Note:
Currently this api only works in GRAPH mode.
Returns:
The origin input data which has been set mutable.
Raises:
TypeError: If `input_data` is not one of Tensor, scalar, tuple, list, dict or their nested structure.
TypeError: If `dynamic_len` is ``True`` and `input_data` is not tuple or list.
ValueError: If `dynamic_len` is ``True`` , `input_data` is tuple or list but the elements within `input_data`
do not have the same type.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> from mindspore import mutable, nn, ops, Tensor, context
>>> from mindspore import dtype as mstype
>>> context.set_context(mode=context.GRAPH_MODE)
>>> class Net(nn.Cell):
... def __init__(self):
... super(Net, self).__init__()
... self.matmul = ops.MatMul()
...
... def construct(self, z):
... x = z[0]
... y = z[1]
... out = self.matmul(x, y)
... return out
...
>>> class GradNetWrtX(nn.Cell):
... def __init__(self, net):
... super(GradNetWrtX, self).__init__()
... self.net = net
... self.grad_op = ops.GradOperation()
...
... def construct(self, z):
... gradient_function = self.grad_op(self.net)
... return gradient_function(z)
...
>>> z = mutable((Tensor([[0.5, 0.6, 0.4], [1.2, 1.3, 1.1]], dtype=mstype.float32),
... Tensor([[0.01, 0.3, 1.1], [0.1, 0.2, 1.3], [2.1, 1.2, 3.3]], dtype=mstype.float32)))
>>> output = GradNetWrtX(Net())(z)
>>> print(output)
(Tensor(shape=[2, 3], dtype=Float32, value=
[[ 1.41000009e+00, 1.60000002e+00, 6.59999943e+00],
[ 1.41000009e+00, 1.60000002e+00, 6.59999943e+00]]), Tensor(shape=[3, 3], dtype=Float32, value=
[[ 1.70000005e+00, 1.70000005e+00, 1.70000005e+00],
[ 1.89999998e+00, 1.89999998e+00, 1.89999998e+00],
[ 1.50000000e+00, 1.50000000e+00, 1.50000000e+00]]))
"""
if not _check_element_type(input_data):
raise TypeError(
f"For 'mutable', the 'input_data' should be one of (bool, int, float, Tensor, tuple, list, dict) "
f"or their nested structures with no self-reference, but got {type(input_data).__name__}: {input_data}.")
if not isinstance(dynamic_len, bool):
raise TypeError(f"For 'mutable', the second input should be bool, but got: {type(input_data).__name__}")
if dynamic_len and not isinstance(input_data, (tuple, list)):
raise TypeError(
f"For 'mutable', when the variable_len is True, the first input should be list or tuple, "
f"but got: {type(input_data).__name__}")
ret = input_data
if isinstance(input_data, bool):
ret = _Bool(input_data)
elif isinstance(input_data, int):
ret = _Int(input_data)
elif isinstance(input_data, float):
ret = _Float(input_data)
elif isinstance(input_data, list):
ret = _List(input_data)
elif isinstance(input_data, tuple):
ret = _Tuple(input_data)
elif isinstance(input_data, dict):
ret = _Dict(input_data)
elif isinstance(input_data, Tensor):
logger.info("For 'mutable', the Tensor in 'input_data' must not be constant. \
We will add set_const_arg=False statement automatically.")
ret.set_const_arg(False)
elif isinstance(input_data, Tensor_):
ret = Tensor(input_data)
logger.info("For 'mutable', the Tensor_ in 'input_data' must not be constant. \
We will add set_const_arg=False statement automatically.")
ret.set_const_arg(False)
setattr(ret, "__ms_mutable__", True)
setattr(ret, "__ms_dynamic_len__", dynamic_len)
setattr(ret, "__ms_origin_object__", input_data)
_check_elements_set.clear()
return ret