mindspore.common.mutable 源代码

# Copyright 2022-2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""mutable function for setting constants mutable."""
from __future__ import absolute_import

from mindspore.common.tensor import Tensor
from mindspore._c_expression import TensorPy as Tensor_
from mindspore import log as logger

_check_elements_set = set()


class _Int(int):
    pass


class _Float(float):
    pass


class _Tuple(tuple):
    pass


class _List(list):
    pass


class _Dict(dict):
    pass


# pylint: disable=super-init-not-called
class _Bool(int):
    """Define a _Bool class that inherits from int, because base class 'bool' is a marked final."""
    def __init__(self, value):
        self.value = bool(value)

    @property
    def __class__(self):
        return bool

    def __and__(self, x):
        return self.value & x

    def __rand__(self, x):
        return x & self.value

    def __or__(self, x):
        return self.value | x

    def __ror__(self, x):
        return x | self.value

    def __xor__(self, x):
        return self.value ^ x

    def __rxor__(self, x):
        return x ^ self.value

    def __str__(self):
        return str(self.value)

    def __repr__(self):
        return repr(self.value)

    def __ms_mutable_bool__(self):
        pass


def _check_element_type_recursion(value):
    """Check if all the elements are valid or self reference."""
    if id(value) in _check_elements_set:
        return False
    _check_elements_set.add(id(value))

    if isinstance(value, (tuple, list)):
        for element in value:
            if not _check_element_type_recursion(element):
                return False
            _check_elements_set.remove(id(element))
        return True
    if isinstance(value, dict):
        for element in value.values():
            if not _check_element_type_recursion(element):
                return False
            _check_elements_set.remove(id(element))
        return True
    return isinstance(value, (Tensor, Tensor_, int, float))


def _check_element_type(value):
    """Check if all the elements are valid."""
    flag = _check_element_type_recursion(value)
    _check_elements_set.clear()
    return flag


[文档]def mutable(input_data, dynamic_len=False): """ Make a constant value mutable. Currently, all the inputs of Cell except Tensor such as scalar, tuple, list and dict, are regarded as constant values. The constant values are non-differentiable and used to do constant folding in the optimization process. Besides, currently when the network input is tuple[Tensor], list[Tensor] or dict[Tensor], even without changing the shape and dtype of the Tensors, the network will be re-compiled when calling this network repeatedly because the these inputs are regarded as constant values. To solve the above problems, we provide api `mutable` to make the constant inputs of Cell 'mutable'. A 'mutable' input means that it is changed to be a variable input just like Tensor and the most important thing is that it will be differentiable. When the `input_data` is tuple or list and `dynamic_len` is False, `mutable` will return a constant length tuple or list with all mutable elements. If `dynamic_len` is True, the length of the return tuple or list will be dynamic. When a dynamic-length tuple or list returned by `mutable` is used as input to a network and the network is called repeatedly, and the length of the tuple or list is different for each run, it does not need to be re-compiled. Args: input_data (Union[Tensor, scalar, tuple, list, dict]): The input data to be made mutable. If 'input_data' is list/tuple/dict, the type of each element should also in the valid types. dynamic_len (bool, optional): Whether to set the whole sequence to be dynamic length. In graph compilation, if `dynamic_len` is ``True`` , the `input_data` must be list or tuple and the elements of `input_data` must have the same type and shape. Default: ``False`` . .. warning:: This is an experimental API that is subject to change or deletion. `dynamic_len` is an experimental argument. Currently, `dynamic_len` is not supported to be ``True`` . Note: Currently this api only works in GRAPH mode. Returns: The origin input data which has been set mutable. Raises: TypeError: If `input_data` is not one of Tensor, scalar, tuple, list, dict or their nested structure. TypeError: If `dynamic_len` is ``True`` and `input_data` is not tuple or list. ValueError: If `dynamic_len` is ``True`` , `input_data` is tuple or list but the elements within `input_data` do not have the same type. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import mutable, nn, ops, Tensor, context >>> from mindspore import dtype as mstype >>> context.set_context(mode=context.GRAPH_MODE) >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.matmul = ops.MatMul() ... ... def construct(self, z): ... x = z[0] ... y = z[1] ... out = self.matmul(x, y) ... return out ... >>> class GradNetWrtX(nn.Cell): ... def __init__(self, net): ... super(GradNetWrtX, self).__init__() ... self.net = net ... self.grad_op = ops.GradOperation() ... ... def construct(self, z): ... gradient_function = self.grad_op(self.net) ... return gradient_function(z) ... >>> z = mutable((Tensor([[0.5, 0.6, 0.4], [1.2, 1.3, 1.1]], dtype=mstype.float32), ... Tensor([[0.01, 0.3, 1.1], [0.1, 0.2, 1.3], [2.1, 1.2, 3.3]], dtype=mstype.float32))) >>> output = GradNetWrtX(Net())(z) >>> print(output) (Tensor(shape=[2, 3], dtype=Float32, value= [[ 1.41000009e+00, 1.60000002e+00, 6.59999943e+00], [ 1.41000009e+00, 1.60000002e+00, 6.59999943e+00]]), Tensor(shape=[3, 3], dtype=Float32, value= [[ 1.70000005e+00, 1.70000005e+00, 1.70000005e+00], [ 1.89999998e+00, 1.89999998e+00, 1.89999998e+00], [ 1.50000000e+00, 1.50000000e+00, 1.50000000e+00]])) """ if not _check_element_type(input_data): raise TypeError( f"For 'mutable', the 'input_data' should be one of (bool, int, float, Tensor, tuple, list, dict) " f"or their nested structures with no self-reference, but got {type(input_data).__name__}: {input_data}.") if not isinstance(dynamic_len, bool): raise TypeError(f"For 'mutable', the second input should be bool, but got: {type(input_data).__name__}") if dynamic_len and not isinstance(input_data, (tuple, list)): raise TypeError( f"For 'mutable', when the variable_len is True, the first input should be list or tuple, " f"but got: {type(input_data).__name__}") ret = input_data if isinstance(input_data, bool): ret = _Bool(input_data) elif isinstance(input_data, int): ret = _Int(input_data) elif isinstance(input_data, float): ret = _Float(input_data) elif isinstance(input_data, list): ret = _List(input_data) elif isinstance(input_data, tuple): ret = _Tuple(input_data) elif isinstance(input_data, dict): ret = _Dict(input_data) elif isinstance(input_data, Tensor): logger.info("For 'mutable', the Tensor in 'input_data' must not be constant. \ We will add set_const_arg=False statement automatically.") ret.set_const_arg(False) elif isinstance(input_data, Tensor_): ret = Tensor(input_data) logger.info("For 'mutable', the Tensor_ in 'input_data' must not be constant. \ We will add set_const_arg=False statement automatically.") ret.set_const_arg(False) setattr(ret, "__ms_mutable__", True) setattr(ret, "__ms_dynamic_len__", dynamic_len) setattr(ret, "__ms_origin_object__", input_data) _check_elements_set.clear() return ret