MindSpore数据格式转换

image0image1image2

概述

用户可以将非标准的数据集和常用的数据集转换为MindSpore数据格式,即MindRecord,从而方便地加载到MindSpore中进行训练。同时,MindSpore在部分场景做了性能优化,使用MindRecord可以获得更好的性能。

非标准数据集转换MindRecord

下面主要介绍如何将CV类数据和NLP类数据转换为MindRecord,并通过MindDataset实现MindRecord文件的读取。

转换CV类数据集

本示例主要介绍用户如何将自己的CV类数据集转换成MindRecord,并使用MindDataset读取。

本示例首先创建一个包含100条记录的MindRecord文件,其样本包含file_name(字符串)、 label(整型)、 data(二进制)三个字段,然后使用MindDataset读取该MindRecord文件。

  1. 导入相关模块。

[1]:
from io import BytesIO
import os
import mindspore.dataset as ds
from mindspore.mindrecord import FileWriter
import mindspore.dataset.vision.c_transforms as vision
from PIL import Image
  1. 生成100张图像,并转换成MindRecord。

[2]:
MINDRECORD_FILE = "test.mindrecord"

if os.path.exists(MINDRECORD_FILE):
    os.remove(MINDRECORD_FILE)
    os.remove(MINDRECORD_FILE + ".db")

writer = FileWriter(file_name=MINDRECORD_FILE, shard_num=1)

cv_schema = {"file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}}
writer.add_schema(cv_schema, "it is a cv dataset")

writer.add_index(["file_name", "label"])

data = []
for i in range(100):
    i += 1

    sample = {}
    white_io = BytesIO()
    Image.new('RGB', (i*10, i*10), (255, 255, 255)).save(white_io, 'JPEG')
    image_bytes = white_io.getvalue()
    sample['file_name'] = str(i) + ".jpg"
    sample['label'] = i
    sample['data'] = white_io.getvalue()

    data.append(sample)
    if i % 10 == 0:
        writer.write_raw_data(data)
        data = []

if data:
    writer.write_raw_data(data)

writer.commit()
[2]:
MSRStatus.SUCCESS

参数说明:

  • MINDRECORD_FILE:输出的MindRecord文件路径。

  1. 通过MindDataset读取MindRecord。

[3]:
data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
decode_op = vision.Decode()
data_set = data_set.map(operations=decode_op, input_columns=["data"], num_parallel_workers=2)
count = 0
for item in data_set.create_dict_iterator(output_numpy=True):
    count += 1
print("Got {} samples".format(count))
Got 100 samples

转换NLP类数据集

本示例主要介绍用户如何将自己的NLP类数据集转换成MindRecord,并使用MindDataset读取。为了方便展示,此处略去了将文本转换成字典序的预处理过程。

本示例首先创建一个包含100条记录的MindRecord文件,其样本包含八个字段,均为整型数组,然后使用MindDataset读取该MindRecord文件。

  1. 导入相关模块。

[4]:
import os
import numpy as np
import mindspore.dataset as ds
from mindspore.mindrecord import FileWriter
  1. 生成100条文本数据,并转换成MindRecord。

[5]:
MINDRECORD_FILE = "test.mindrecord"

if os.path.exists(MINDRECORD_FILE):
    os.remove(MINDRECORD_FILE)
    os.remove(MINDRECORD_FILE + ".db")

writer = FileWriter(file_name=MINDRECORD_FILE, shard_num=1)

nlp_schema = {"source_sos_ids": {"type": "int64", "shape": [-1]},
              "source_sos_mask": {"type": "int64", "shape": [-1]},
              "source_eos_ids": {"type": "int64", "shape": [-1]},
              "source_eos_mask": {"type": "int64", "shape": [-1]},
              "target_sos_ids": {"type": "int64", "shape": [-1]},
              "target_sos_mask": {"type": "int64", "shape": [-1]},
              "target_eos_ids": {"type": "int64", "shape": [-1]},
              "target_eos_mask": {"type": "int64", "shape": [-1]}}
writer.add_schema(nlp_schema, "it is a preprocessed nlp dataset")

data = []
for i in range(100):
    i += 1

    sample = {"source_sos_ids": np.array([i, i + 1, i + 2, i + 3, i + 4], dtype=np.int64),
              "source_sos_mask": np.array([i * 1, i * 2, i * 3, i * 4, i * 5, i * 6, i * 7], dtype=np.int64),
              "source_eos_ids": np.array([i + 5, i + 6, i + 7, i + 8, i + 9, i + 10], dtype=np.int64),
              "source_eos_mask": np.array([19, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
              "target_sos_ids": np.array([28, 29, 30, 31, 32], dtype=np.int64),
              "target_sos_mask": np.array([33, 34, 35, 36, 37, 38], dtype=np.int64),
              "target_eos_ids": np.array([39, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
              "target_eos_mask": np.array([48, 49, 50, 51], dtype=np.int64)}

    data.append(sample)
    if i % 10 == 0:
        writer.write_raw_data(data)
        data = []

if data:
    writer.write_raw_data(data)

writer.commit()
[5]:
MSRStatus.SUCCESS

参数说明:

  • MINDRECORD_FILE:输出的MindRecord文件路径。

  1. 通过MindDataset读取MindRecord。

[6]:
data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
count = 0
for item in data_set.create_dict_iterator():
    count += 1
print("Got {} samples".format(count))
Got 100 samples

常用数据集转换MindRecord

MindSpore提供转换常用数据集的工具类,能够将常用的数据集转换为MindRecord。部分常用数据集及其对应的工具类列表如下。

数据集

格式转换工具类

CIFAR-10

Cifar10ToMR

ImageNet

ImageNetToMR

TFRecord

TFRecordToMR

CSV File

CsvToMR

更多数据集转换的详细说明可参见API文档

转换CIFAR-10数据集

用户可以通过Cifar10ToMR类,将CIFAR-10原始数据转换为MindRecord,并使用MindDataset读取。

  1. 下载CIFAR-10数据集并解压到指定目录,在Jupyter Notebook中执行如下命令:

[7]:
!wget -N https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-python.tar.gz --no-check-certificate
!mkdir -p datasets
!tar -xzf cifar-10-python.tar.gz -C datasets
!tree ./datasets/cifar-10-batches-py
./datasets/cifar-10-batches-py
├── batches.meta
├── data_batch_1
├── data_batch_2
├── data_batch_3
├── data_batch_4
├── data_batch_5
├── readme.html
└── test_batch

0 directories, 8 files
  1. 导入相关模块

[8]:
import os
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as vision
from mindspore.mindrecord import Cifar10ToMR
  1. 创建Cifar10ToMR对象,调用transform接口,将CIFAR-10数据集转换为MindRecord。

[9]:
ds_target_path = "./datasets/mindspore_dataset_conversion/"
# clean old run files
os.system("rm -f {}*".format(ds_target_path))
os.system("mkdir -p {}".format(ds_target_path))

CIFAR10_DIR = "./datasets/cifar-10-batches-py"
MINDRECORD_FILE = "./datasets/mindspore_dataset_conversion/cifar10.mindrecord"
cifar10_transformer = Cifar10ToMR(CIFAR10_DIR, MINDRECORD_FILE)
cifar10_transformer.transform(['label'])
[9]:
MSRStatus.SUCCESS

参数说明:

  • CIFAR10_DIR:CIFAR-10数据集路径。

  • MINDRECORD_FILE:输出的MindRecord文件路径。

  1. 通过MindDataset读取MindRecord。

[10]:
data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
decode_op = vision.Decode()
data_set = data_set.map(operations=decode_op, input_columns=["data"], num_parallel_workers=2)
count = 0
for item in data_set.create_dict_iterator(output_numpy=True):
    count += 1
print("Got {} samples".format(count))
Got 50000 samples

转换ImageNet数据集

用户可以通过ImageNetToMR类,将ImageNet原始数据(图片、标注)转换为MindRecord,并使用MindDataset读取。

  1. 下载ImageNet数据集,将所有图片存放在images/文件夹,用一个映射文件labels_map.txt记录图片和标签的对应关系。映射文件包含2列,分别为各类别图片目录和标签ID,用空格隔开,映射文件示例如下:

n01440760 0
n01443537 1
n01484850 2
n01491361 3
n01494475 4
n01496331 5

文件目录结构如下所示:

├─ labels_map.txt
└─ images
    └─ ......
  1. 导入相关模块。

import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as vision
from mindspore.mindrecord import ImageNetToMR
  1. 创建ImageNetToMR对象,调用transform接口,将数据集转换为MindRecord。

IMAGENET_MAP_FILE = "./labels_map.txt"
IMAGENET_IMAGE_DIR = "./images"
MINDRECORD_FILE = "./imagenet.mindrecord"
imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, MINDRECORD_FILE, partition_number=1)
imagenet_transformer.transform()

参数说明:

  • IMAGENET_MAP_FILE:ImageNet数据集标签映射文件的路径。

  • IMAGENET_IMAGE_DIR:包含ImageNet所有图片的文件夹路径。

  • MINDRECORD_FILE:输出的MindRecord文件路径。

  1. 通过MindDataset读取MindRecord。

data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
decode_op = vision.Decode()
data_set = data_set.map(operations=decode_op, input_columns=["image"], num_parallel_workers=2)
count = 0
for item in data_set.create_dict_iterator(output_numpy=True):
    count += 1
print("Got {} samples".format(count))

转换CSV数据集

本示例首先创建一个包含5条记录的CSV文件,然后通过CsvToMR工具类将CSV文件转换为MindRecord,并最终通过MindDataset将其读取出来。

  1. 导入相关模块。

[11]:
import csv
import os
import mindspore.dataset as ds
from mindspore.mindrecord import CsvToMR
  1. 生成CSV文件,并转换成MindRecord。

[12]:
CSV_FILE = "test.csv"
MINDRECORD_FILE = "test.mindrecord"

def generate_csv():
    headers = ["id", "name", "math", "english"]
    rows = [(1, "Lily", 78.5, 90),
            (2, "Lucy", 99, 85.2),
            (3, "Mike", 65, 71),
            (4, "Tom", 95, 99),
            (5, "Jeff", 85, 78.5)]
    with open(CSV_FILE, 'w', encoding='utf-8') as f:
        writer = csv.writer(f)
        writer.writerow(headers)
        writer.writerows(rows)

generate_csv()

if os.path.exists(MINDRECORD_FILE):
    os.remove(MINDRECORD_FILE)
    os.remove(MINDRECORD_FILE + ".db")

csv_transformer = CsvToMR(CSV_FILE, MINDRECORD_FILE, partition_number=1)

csv_transformer.transform()

assert os.path.exists(MINDRECORD_FILE)
assert os.path.exists(MINDRECORD_FILE + ".db")

参数说明:

  • CSV_FILE:CSV文件的路径。

  • MINDRECORD_FILE:输出的MindRecord文件路径。

  1. 通过MindDataset读取MindRecord。

[13]:
data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
count = 0
for item in data_set.create_dict_iterator(output_numpy=True):
    count += 1
print("Got {} samples".format(count))
Got 5 samples

转换TFRecord数据集

目前支持TensorFlow 1.13.0-rc1及以上版本。

此部分示例需提前安装TensorFlow,如果未安装,执行下面的命令进行安装。如本文档以Notebook运行时,完成安装后,需要重启kernel后,执行后续代码。

[14]:
os.system('pip install tensorflow') if os.system('python -c "import tensorflow"') else print("TensorFlow installed")

本示例首先通过TensorFlow创建一个TFRecord文件,然后通过TFRecordToMR工具类将TFRecord文件转换为MindRecord,最后通过MindDataset将其读取出来,并使用Decode算子对image_bytes字段进行解码。

  1. 导入相关模块。

[15]:
import collections
from io import BytesIO
import os
import mindspore.dataset as ds
from mindspore.mindrecord import TFRecordToMR
import mindspore.dataset.vision.c_transforms as vision
from PIL import Image
import tensorflow as tf
  1. 生成TFRecord文件。

[16]:
TFRECORD_FILE = "test.tfrecord"
MINDRECORD_FILE = "test.mindrecord"

def generate_tfrecord():
    def create_int_feature(values):
        if isinstance(values, list):
            feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
        else:
            feature = tf.train.Feature(int64_list=tf.train.Int64List(value=[values]))
        return feature

    def create_float_feature(values):
        if isinstance(values, list):
            feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
        else:
            feature = tf.train.Feature(float_list=tf.train.FloatList(value=[values]))
        return feature

    def create_bytes_feature(values):
        if isinstance(values, bytes):
            white_io = BytesIO()
            Image.new('RGB', (10, 10), (255, 255, 255)).save(white_io, 'JPEG')
            image_bytes = white_io.getvalue()
            feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))
        else:
            feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[bytes(values, encoding='utf-8')]))
        return feature

    writer = tf.io.TFRecordWriter(TFRECORD_FILE)

    example_count = 0
    for i in range(10):
        file_name = "000" + str(i) + ".jpg"
        image_bytes = bytes(str("aaaabbbbcccc" + str(i)), encoding="utf-8")
        int64_scalar = i
        float_scalar = float(i)
        int64_list = [i, i+1, i+2, i+3, i+4, i+1234567890]
        float_list = [float(i), float(i+1), float(i+2.8), float(i+3.2),
                    float(i+4.4), float(i+123456.9), float(i+98765432.1)]

        features = collections.OrderedDict()
        features["file_name"] = create_bytes_feature(file_name)
        features["image_bytes"] = create_bytes_feature(image_bytes)
        features["int64_scalar"] = create_int_feature(int64_scalar)
        features["float_scalar"] = create_float_feature(float_scalar)
        features["int64_list"] = create_int_feature(int64_list)
        features["float_list"] = create_float_feature(float_list)

        tf_example = tf.train.Example(features=tf.train.Features(feature=features))
        writer.write(tf_example.SerializeToString())
        example_count += 1
    writer.close()
    print("Write {} rows in tfrecord.".format(example_count))

generate_tfrecord()
Write 10 rows in tfrecord.

参数说明:

  • TFRECORD_FILE:TFRecord文件的路径。

  • MINDRECORD_FILE:输出的MindRecord文件路径。

  1. 将TFRecord转换成MindRecord。

[17]:
feature_dict = {"file_name": tf.io.FixedLenFeature([], tf.string),
                "image_bytes": tf.io.FixedLenFeature([], tf.string),
                "int64_scalar": tf.io.FixedLenFeature([], tf.int64),
                "float_scalar": tf.io.FixedLenFeature([], tf.float32),
                "int64_list": tf.io.FixedLenFeature([6], tf.int64),
                "float_list": tf.io.FixedLenFeature([7], tf.float32),
                }

if os.path.exists(MINDRECORD_FILE):
    os.remove(MINDRECORD_FILE)
    os.remove(MINDRECORD_FILE + ".db")

tfrecord_transformer = TFRecordToMR(TFRECORD_FILE, MINDRECORD_FILE, feature_dict, ["image_bytes"])
tfrecord_transformer.transform()

assert os.path.exists(MINDRECORD_FILE)
assert os.path.exists(MINDRECORD_FILE + ".db")
  1. 通过MindDataset读取MindRecord。

[18]:
data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
decode_op = vision.Decode()
data_set = data_set.map(operations=decode_op, input_columns=["image_bytes"], num_parallel_workers=2)
count = 0
for item in data_set.create_dict_iterator(output_numpy=True):
    count += 1
print("Got {} samples".format(count))
Got 10 samples