Online Inference with Checkpoint
Ascend
Inference Application
Use the model.eval
interface for model validation
Local Storage
When the pre-trained models are saved in local, the steps of performing inference on validation dataset are as follows: firstly creating a model, then loading the model and parameters using load_checkpoint
and load_param_into_net
in mindspore
module, and finally performing inference on the validation dataset once being created. The method of processing the validation dataset is the same as that of the training dataset.
network = LeNet5(cfg.num_classes)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
print("============== Starting Testing ==============")
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
dataset = create_dataset(os.path.join(args.data_path, "test"),
cfg.batch_size,
1)
acc = model.eval(dataset, dataset_sink_mode=args.dataset_sink_mode)
print("============== {} ==============".format(acc))
In the preceding information:
model.eval
is an API for model validation. For details about the API, see https://www.mindspore.cn/docs/api/en/r1.5/api_python/mindspore.html#mindspore.Model.eval.
Inference sample code: https://gitee.com/mindspore/models/blob/r1.5/official/cv/lenet/eval.py.
Remote Storage
When the pre-trained models are saved remotely, the steps of performing inference on the validation dataset are as follows: firstly determining which model to be used, then loading the model and parameters using mindspore_hub.load
, and finally performing inference on the validation dataset once being created. The method of processing the validation dataset is the same as that of the training dataset.
model_uid = "mindspore/ascend/0.7/googlenet_v1_cifar10" # using GoogleNet as an example.
network = mindspore_hub.load(model_uid, num_classes=10)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
print("============== Starting Testing ==============")
dataset = create_dataset(os.path.join(args.data_path, "test"),
cfg.batch_size,
1)
acc = model.eval(dataset, dataset_sink_mode=args.dataset_sink_mode)
print("============== {} ==============".format(acc))
In the preceding information:
mindspore_hub.load
is an API for loading model parameters. Please check the details in https://www.mindspore.cn/hub/api/en/r1.5/index.html#module-mindspore_hub.
Use the model.predict
API to perform inference
model.predict(input_data)
In the preceding information:
model.predict
is an API for inference. For details about the API, see https://www.mindspore.cn/docs/api/en/r1.5/api_python/mindspore.html#mindspore.Model.predict.